Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

Abstract

The best known model to explain the observed radiosensit izing actions of oxygen or electron affinic drugs on hypoxic cells irradiated in vitro is that of “radical repair” (1–3). The model states that radiation-induced radicals produced in critical molecules (like DNA) undergo competitive reactions either with oxidizing species, such as oxygen or other electron affinic agents (e.g. misonidazole) leading to damage “fixation” followed by cell death (Figure 1), or with reducing species, such as non-protein thiols (NPSH) leading to damage “repair” (perhaps through hydrogen atom donation) followed by continued cell viability. Support for this model comes from pulse radiolysis techniques. For simple molecules the reactions of molecular oxygen with free radicals occur at essentially diffusion controlled rates, both for radical addition or electron transfer which occurs less frequently (4, 5). The ratio of the rate constant for radical fixation relative to that for repair is in the range of 200–1000; it is constant at about 200 for both poly-U in the presence of GSH and for transforming DNA in solution (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper T, Howard-Flanders P: Role of oxygen in modifying the radiosensitivity of E. Coli B. Nature 178: 978–979, 1956.

    CAS  Google Scholar 

  2. Howard-Flanders P: Physical and chemical mechanisms in the injury of cells by ionizing radiations. Adv. Biol. Med. and Phys. 6: 553–603, 1958.

    CAS  Google Scholar 

  3. Howard-Flanders P, Moore D: The time interval after pulsed irradiation within which injury to bacteria can be modified by dissolved oxygen. Radiat. Res. 9: 442–437, 1958.

    Article  Google Scholar 

  4. Adams GE: Molecular mechanisms of cellular radiosensitization and protection. In: Radiation Protection and Sensitization, Moroson HL, Quintilliani M (eds), London, Taylor and Frances, 1970, pp. 3–14.

    Google Scholar 

  5. Greenstock CL: Redox processes in radiation biology and cancer. Radiat. Res. 86: 196–211, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Schulte-Frohlinde D: Kinetics and mechanism of DNA strand breaks. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic, M (eds), New York, Academic Press, 1983, pp. 53–72.

    Google Scholar 

  7. Howard-Flanders P, Levin J, Theriot L: Reactions of DNA radicals with SH compounds in x-irradiated bacteriophage systems. Radiat. Res. 18: 593–606, 1963.

    Article  PubMed  CAS  Google Scholar 

  8. Johansen I, Howard-Flanders P: Macromolecular repair and free radical scavenging in the protection of bacteria against x-rays. Radiat. Res. 24: 184–200, 1965.

    Article  PubMed  CAS  Google Scholar 

  9. Held KD, Harrop HA, Michael BD: Reaction kinetics of SH-containing compounds and oxygen with irradiated transforming DNA. Radiat. Res. 91: 304, 1982.

    Google Scholar 

  10. Biaglow JE, Varnes ME, Clark EP, Epp ER: The role of thiols in cellular response to radiation and drugs. Radiat. Res. 95: 437–455, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Adams GE: Hypoxic cell sensitizers for radiotherapy. In: Cancer: A Comprehensive Treatise, Becker FF (ed), New York, Plenum, 1978, 6: 181–223.

    Google Scholar 

  12. Harris JW: Cellular thiols in radiation and drug response: Use of specific reagents. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic, M (eds), New York, Academic Press, 1983, pp. 255–274.

    Google Scholar 

  13. Chapman JD, Reuvers AP, Borsa J, Greenstock CL: Radio-protection and radiosensitization of mammalian cells growing in vitro. Radiat. Res. 56: 291–306, 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Varnes ME, Biaglow JE, CJ Koch, EJ Hall: Depletion of nonprotein thiols of hypoxic cells by misonidazole and metronidazole. In: Radiation Sensitizers, Cancer Management, Vol. 5, Chapter 18, Brady L (ed), New York, Masson Publishing Co., 1980, pp. 121–126.

    Google Scholar 

  15. Biaglow JE, Varnes ME, Astor M, Hall EJ: Mechanism of misonidazole-linked cytotoxicity and altered radiation response: Role of cellular thiols. Brit. J. Radiol. 54: 1006–1008, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Bump EA, Yu NY, Brown JM: Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science 217: 544–545, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Koch CJ: Competition between radiation protectors and radiation sensitizers in mammalian cells. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 275–296.

    Google Scholar 

  18. Adams GE, Sheldon PW, Stratford IJ: Evaluation of novel radiation sensitizers in vitro and in vivo. Int. J. Radiat. Oncol. Biol. and Phys. 8: 419–421, 1982.

    Article  CAS  Google Scholar 

  19. Griffith OW, Meister A: Potent and specific inhibition of glutathione synthesis of buthionine sulfoximine (S-n buty homocysteine sulfoximine). J. Biol. Chem. 254: 121–152, 1979.

    Google Scholar 

  20. Meister A: Glutathione metabolism and transport. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 121–152.

    Google Scholar 

  21. Malaise EP: Reduced oxygen enhancement of radiosensitivity of glutathione-deficient fibroblasts as demonstrated by their clonogenic survival. Radiat. Res. 95: 480–490, 1983.

    Article  Google Scholar 

  22. Revesz L: Studies with glutathione-deficient human cells. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 237–245.

    Google Scholar 

  23. Bridges BA: Sensitization of organisms to radiation by sulfhydryl binding agents. Adv. Radiat. Biol. 3: 123–176, 1969.

    CAS  Google Scholar 

  24. Biaglow JE, Varnes ME, Epp ER, Clark EP: Cell redox thiyl radicals, Breccia A, Rogers M (eds), Italy, Edizione Scientifiche, 1986, in press.

    Google Scholar 

  25. Nygaard OF, Simic M: Radioprotectors and Anticarcinogens, New York, Academic Press, 1983.

    Google Scholar 

  26. Reed DJ: Regulation and function of glutathione in cells. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 153–168.

    Google Scholar 

  27. Meister A: On the cycles of glutathione metabolism and transport. Current Topics in Cell. Reg. 18: 21–58, 1981.

    CAS  Google Scholar 

  28. Jocelyn W: Biochemistry of the Thiols, New York, Academic Press, 1973.

    Google Scholar 

  29. Varnes ME, Biaglow JE: Interactions of the carcinogen 4-nitroguinoline-1-oxide with the non-protein thiols of mammalian cells. Cancer Res. 39: 3960–3965, 1979.

    Google Scholar 

  30. Tietze F: Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal. Biochem. 27: 502–522, 1969.

    Article  PubMed  CAS  Google Scholar 

  31. Harris JW: Mammalian cell studies with diamide. Pharmacol. Ther. 7: 375–391, 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Vos O, Grant A, Budke L: Radiosensitization of mammalian cells by diamide. Int. J. Radiat. Biol. 6: 513–522, 1976.

    Article  Google Scholar 

  33. Martin P, Tobias CA, Blakely EA: Differential post-irradiation sensitization by diamide under aerobic and hypoxic conditions. Radiat. Res., Abstract, 1983.

    Google Scholar 

  34. Biaglow JE, Jacobson B, Greenstock CL, Raleigh J: Effect of nitrobenzene derivatives on electron transfer in cellular and chemical models. Mol. Pharmacol. 13: 269–282, 1977.

    PubMed  CAS  Google Scholar 

  35. Biaglow JE: Cellular electron transfer and radical mechanism for drug metabolism. Radiat. Res. 86: 212–242, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Nygaard OF, Biaglow JE, Harris JW: Role of nonprotein thiols in cellular radiation response: Biochemical studies with diamide. Proceedings of Combined Modality Cancer Treatment, Cancer Management 5, Chapter 24, Brady L (ed), New York, Masson Publishing, Inc., 1980, pp. 164–171.

    Google Scholar 

  37. Biaglow JE, Nygaard OF: The use of the oxidant “diamide” for studying the non-mitochondrial reducing capacity of Ehrlich ascites tumor cells. Biochem. Biophys. Res. Commun. 54: 874–880, 1973.

    Article  PubMed  CAS  Google Scholar 

  38. Jacobson B, Biaglow JE, Fielden ME, Adams GE: Respiratory effects and ascorbate reactions with misonidazole and other recently developed drugs. Cancer Clinical Trials 3: 47–53, 1980.

    PubMed  CAS  Google Scholar 

  39. Varnes ME, Biaglow JE: Mechanism of action of misonidazole: Stimulation of hexose monophosphate shunt activity. Radiat. Res. 91: 378, 1982.

    Google Scholar 

  40. Sinclair WK: N-ethylmaleimide and the cyclic response to x-rays of synchronous Chinese hamster cells. Radiat. Res. 55: 41–57, 1973.

    Article  PubMed  CAS  Google Scholar 

  41. Han A, Sinclair WK, Kimler BF: The effect of N-ethylmaleimide on the response to x-rays of synchronized HeLa cells. Radiat. Res. 65: 337–350, 1976.

    Article  PubMed  CAS  Google Scholar 

  42. Kimler BF, Sinclair WK, Elkind MM: N-ethylmaleimide sensitization of x-irradiated hypoxic Chinese hamster cells. Radiat. Res. 71: 204–213, 1977.

    Article  PubMed  CAS  Google Scholar 

  43. Biaglow JE, Varnes ME: Mechanism of action of thiol depleting agents. Submitted to Radiat. Res., 1985.

    Google Scholar 

  44. Biaglow JE, Clark E, Epp E et al: Nonprotein thiols and the radiation response of A549 human lung carcinoma cells. Int. J. Radiat. Biol. 4: 489–495, 1983.

    Article  Google Scholar 

  45. Bump EA, Yu NY, Brown JM: The use of drugs which depletes intracellular glutathione in hypoxic cell radiosensit-ization. Int. J. Radiat. Oncol. Biol. Phys. 8: 439–442, 1982.

    Article  PubMed  CAS  Google Scholar 

  46. Mitchell JB, Russo A, Biaglow JE, McPherson S: Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine and its effects on the oxygen enhancement ratio. Radiat. Res. 94: 612–620, 1983.

    Google Scholar 

  47. Adams GE: Accomplishments, problems and prospects—A conference discussion. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 749–760.

    Google Scholar 

  48. Plummer JW, Smith BR, Sies H, Bend JR: Chemical depletion of glutathione in vivo. In: Methods of Enzymology, Jacoby WA (ed), New York, Academic Press, 1981, pp. 50–58.

    Google Scholar 

  49. Webb JL, Maleate: Enzyme and Metabolic Inhibition, Vol. I, Chapter 2, Webb JL (ed), New York, Academic Press, 1966, pp. 285–335.

    Google Scholar 

  50. Biaglow JE, Bump EA, Varnes ME: Mechanism of enhanced radiation response of misonidazole in combination with thiol removing agents. Radiat. Res., Abstract, 1985.

    Google Scholar 

  51. Biaglow JE, Varnes ME, Astor M, Hall EJ: Non-protein thiols and cellular response to drugs and radiation. Int. J. Radiat. Oncol. Biol. Phys. 8: 719–723, 1982.

    Article  PubMed  CAS  Google Scholar 

  52. Agnew DA, Skarsgard LD: Chemical radiosensitization of anoxic mammalian cells: Effect of cell concentration. Radiat. Res. 57: 246–259, 1974.

    Article  PubMed  CAS  Google Scholar 

  53. Dethmers JK, Meister A: Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl. Acad. Sci. 78: 7492–7496, 1981.

    Article  PubMed  CAS  Google Scholar 

  54. Clark EP, Epp ER, Biaglow JE: Glutathione depletion, radiosensitization and misonidazole potentiation in hypoxic Chinese hamster ovary cells by buthionine sulfoximine. Rad. Res. 98: 370–380, 1984.

    Article  CAS  Google Scholar 

  55. Biaglow JE, Varnes ME, Astor M et al: Intracellular thiols: Involvement in drug metabolism and radiation response. In: Radioprotectors and Anticarcinogens, Nygaard OF, Simic M (eds), New York, Academic Press, 1983, pp. 203–235.

    Google Scholar 

  56. Adams GE: Radiation sensitizers for hypoxic cells. In: Treatment of Radioresistant Cancers, Abe M, Sakamoto K, Philips TL (eds), New York, Biomedical Press, 1979, pp. 3–19.

    Google Scholar 

  57. Astor M, Hall EJ, Biaglow JE: Newly synthesized hypoxia mediated drugs as radiosensitizers and cytotoxic agents. Int. J. Radiat. Oncol. Biol. Phys. 8: 75–83, 1982.

    Article  PubMed  CAS  Google Scholar 

  58. Hall EJ, Astor M, Biaglow JE, Parham JC: The enhanced sensitivity of mammalian cells to killing by x-rays after prolonged exposure to several nitroimidazoles. Int. J. Radiat. Oncol. Biol. Phys. 8: 447–451, 1982.

    Article  PubMed  CAS  Google Scholar 

  59. Stratford IJ, Hoe S, Adams GE et al: Abnormal radiosensitizing and cytotoxic properties of ortho-substituted nitroimidazoles. Int. J. Radiat. Biol. 43: 31–43, 1983.

    Article  CAS  Google Scholar 

  60. Wardman P: The kinetics of the reaction of “anomalous” 4-nitroimidazole radiosensitizers with thiols. Int. j. Radiat. Biol. 41: 231–235, 1982.

    Article  CAS  Google Scholar 

  61. Roizin-Towle L, Hall EJ, Flynn M et al: Enhanced cytotoxicity of melphalan by prolonged exposure to nitroimidazoles: The role of endogenous thiols. Int. J. Radiat. Oncol. Biol. Phys. 43: 757–761, 1982.

    Google Scholar 

  62. Taylor YC, Bump EA, Brown JM: Studies on the mechanism of chemosensitization by misonidazole in vitro. Int. J. Radiat. Oncol. Biol. Phys. 43: 705–708, 1982.

    Google Scholar 

  63. Wendel A: Glutathione peroxidase. In: Methods of Enzymology, Jakoby WB (ed), New York, Academic Press, 1982, pp. 325–333.

    Google Scholar 

  64. Biaglow JE, Varnes ME, Epp ER et al: Factors involved in depletion of glutathione from A549 human lung carcinoma cells: Implications for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 10: 1221–1228, 1984.

    Article  PubMed  CAS  Google Scholar 

  65. Varnes ME, Biaglow JE: Misonidazole-induced biochemical alterations of mammalian cells: Effects on glycolysis. Int. J. Radiat. Oncol. Biol. Phys. 8: 683–686, 1982.

    Article  PubMed  CAS  Google Scholar 

  66. Varnes ME, Biaglow JE, Roizin-Towle LK, Hall EJ: Depletion of glutathione and NPSH by buthionine sulfoximine and diethylmaleate: Factors that influence enhancement of aerobic radiation response. Int. J. Radiat. Oncol. Biol. Phys. 10: 1229–1234, 1984.

    Article  PubMed  CAS  Google Scholar 

  67. Olive PL: Inhibition of DNA synthesis by nitroheterocycles. I. Correlation with half-wave reduction potential. Br. J. Cancer 40: 89–93, 1979.

    CAS  Google Scholar 

  68. Varnes ME, Tuttle SW, Biaglow JE: Nitroheterocycle metabolism in mammalian cells: Stimulation of the hexose monophosphate shunt. Biochem. Pharm. 30: 1671–1677, 1984.

    Article  Google Scholar 

  69. Biaglow JE: The effect of hypoxic cell radiosensitizing drugs on cellular oxygen utilization. Pharmacol. Reviews 10: 283–299, 1980.

    CAS  Google Scholar 

  70. Donahue L, Biaglow JE, Varnes ME: Use of peroxidase and oxidase electrodes to determine tumor cell metabolism of peroxide. Adv. Experimental Medicine, in press, 1986.

    Google Scholar 

  71. Yau TM: Mutagenicity and cytotoxicity of malondialdehyde. In: Mammalian Cells, Mechanism of Ageing and Development, Vol. 11, 1979, pp. 137–147.

    Article  CAS  Google Scholar 

  72. Biaglow JE, Varnes ME, Epp ER, Clark EP: Redox enzymes and thiol radicals. In: Oxygen Radicals in Chemistry and Medicine, Pergamon Press, in press, 1986.

    Google Scholar 

  73. Astor M, Hall EJ, Martin J et al: Radiosensitizing and cytotoxic properties of ortho-substitute 4-and 5-nitroimidazole. Int. J. Radiat. Oncol. Biol. Phys. 8: 409–415, 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Singh A, Petkau A: Singlet oxygen and related species in chemistry and biology. Photochem. Photobiol. 28: 429–921, 1977.

    Article  Google Scholar 

  75. Younes M, Siegers CP: Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo. Chem-Biol. Interac. 34: 257–266, 1981.

    Article  CAS  Google Scholar 

  76. Meister A: Selective modification of glutathione metabolism. Science 220: 472–477, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Biaglow, J.E., Varnes, M.E., Clark, E.P., Epp, E.R. (1986). The Role of Cellular Glutathione in Response of Tumor Cells to Radiation and Drugs. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics