Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

Abstract

Biochemical modulation defines an area of both basic and clinical cancer research in which one or more agents which may not have inherent cytotoxic activity against a given normal or tumor cell population are employed to modulate the cytotoxicity of an activeanticancer agent. The modulation can be either to increase the cytotoxicity of the anticancer agent against clonogenic tumor cells or to decrease the cytotoxicity of the anticancer agent against cells of the dose-limiting normal tissues. While the former situation can lead to a significant increase in tumor cell killing for a given dose of anticancer agent, the latter would allow dose escalation with, presumably, increased antitumor activity. Obviously, for either case, the goal of biochemical modulation is to increase the selective cytotoxicity of an anticancer agent for tumor versus normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Block A: Metabolic conditioning and metabolic actuation: Experimental approaches to cancer chemotherapy involving combinations of metaboloites and antimetabolites. Cancer Chem. Rep. 58: 471–477, 1974.

    Google Scholar 

  2. Goldin A, Venditti JM, Humphreys SR, Mantel N: Modification of treatment schedules in the management of advanced mouse leukemia with amethopterin. J. Nat. Cancer Inst. 17: 203–212, 1956.

    PubMed  CAS  Google Scholar 

  3. Valeriote F, Santelli G: 5-Fluorouracil. Pharmac. Ther. 24: 107–132, 1984.

    Article  CAS  Google Scholar 

  4. Sirotnak FM, Moccio DM, Dorrick DM: Optimization of high dose methotrexate with leucovorin rescue therapy in the L1210 leukemia and Sarcoma 180 murine tumor models. Cancer Res. 38: 345–353, 1978.

    PubMed  CAS  Google Scholar 

  5. Madoc-Jones H, Bruce WR: On the mechanism of the lethal action of 5-fluorouracil on mouse L cells. Cancer Res. 28: 1976–1981, 1968.

    PubMed  CAS  Google Scholar 

  6. Houghton JA, Maroda S Jr, Phillips JO, Houghton PJ: Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res. 41: 144–149, 1981.

    PubMed  CAS  Google Scholar 

  7. Schwartz PM, Dunigan JM, Marsh JC, Handschumacher RE: Allopurinol modification of the toxicity and antitumor activity of 5-fluorouracil. Cancer Res. 40: 1885–1889, 1980.

    PubMed  CAS  Google Scholar 

  8. Vistica DT, Toal JN, Rabinovitz M: Amino acid-conferred resistance to melphalan. I. Structure-activity relationship in cultured murine L1210 leukemia cells. Cancer Treat. Rep. 60: 1363–1367, 1976.

    PubMed  CAS  Google Scholar 

  9. Vistica DT: Cellular pharmacokinetics of the phenylalanine mustards. Pharmac. Ther. 22: 379–405, 1983.

    Article  CAS  Google Scholar 

  10. Vistica DT: Cytotoxicity as an indicator for transport mechanism. Evidence that melphalan is transported by two leucine-preferring carrier systems in the L1210 murine leukemia cell. Biochim. Biophys. Acta. 550: 309–317, 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Vistica DT, Von Hoff DD, Torain B: Uptake of melphalan by human ovarian carcinoma cells and its relationship to the amino acid content of ascitic fluid. Cancer Treat. Rep. 65: 157–161, 1981.

    PubMed  CAS  Google Scholar 

  12. Rupniak HT, Paul D: Selective killing of transformed cells by exploitation of their defective cell cycle control by polyamines. Cancer Res. 40: 293–297, 1980.

    PubMed  CAS  Google Scholar 

  13. Rozengurt E, Po CC: Selective cytotoxicity for transformed 3T3 cells. Nature 261: 701–702, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Teodori L, Barlogie B, Drewinko B et al: Reduction of 1-B-D-arabinofuranosylcytosine and adriamycin cytotoxicity following cell cycle arrest by anguidine. Cancer Res. 41: 1263–1270, 1981.

    PubMed  CAS  Google Scholar 

  15. Warrington RC, Fang WD: L-Histidinol protection against cytotoxic action of cytosine arabinoside and 5-fluorouracil in cultured mouse spleen cells. J. Natl. Cancer Inst. 68: 279–286, 1982.

    PubMed  CAS  Google Scholar 

  16. Nerwman EM, Nierenberg DW, Santi DV: Selective killing of transformed cells by methotrexate with histidine deprivation or with-amino alcohols. Cancer Res. 43: 4703–4708, 1983.

    Google Scholar 

  17. Hansen BS, Vaughan MH, Wang L-J: Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J. Biol. Chem. 247: 3854–3857, 1972.

    PubMed  CAS  Google Scholar 

  18. Pardee AB: A restriction point for control of normal animal cell proliferation. Proc. Nat. Acad. Sci. 71: 1286–1290, 1974.

    Article  PubMed  CAS  Google Scholar 

  19. Warrington RC, Muzyka TG, Fang WD: Histidinol-mediated improvement in the specificity of 1-B-D-arabinofuranosyl-cytosine and 5-fluorouracil in L1210 leukemia-bearing mice. Cancer Res. 44: 2929–2935, 1984.

    PubMed  CAS  Google Scholar 

  20. Valeriote F, Santelli G: 5-Fluorouracil. Pharmac. Ther. 24: 107–132, 1984.

    Article  CAS  Google Scholar 

  21. Patt HM, Tyree EB, Straube RL, Smith DE: Cysteine protection against x-irradiation. Science 110: 213–214, 1949.

    Article  PubMed  CAS  Google Scholar 

  22. Patt HM, Smith DE, Tyree EB, Straube RL: Further studies on modification of sensitivity to x-rays by cysteine. Proc. Soc. Exp. Biol. Med. 73: 18–21, 1950.

    PubMed  CAS  Google Scholar 

  23. Bacq ZM, Dechamps G, Fischer P et al: Protection against x-rays and therapy of radiation sickness with B-Mercapto-ethylamine. Science 117: 633–636, 1983.

    Article  Google Scholar 

  24. Alexander P, Bacq ZM, Cousens SF, Fox M, Herve A, Lazar J: Mode of action of some substances which protect against the lethal effects of x-rays. Radiat. Res. 2: 392–413, 1955.

    Article  PubMed  CAS  Google Scholar 

  25. Yuhas JM, Storer JB: Differential chemoprotection of normal and malignant tissues. J. Nat. Cancer Inst. 42: 331–335, 1969.

    PubMed  CAS  Google Scholar 

  26. Denekamp J, Michael BD, Rojas A, Stewart FA: Thiol radio-protection in vivo: The critical role of tissue oxygen concentration. Brit. J. Radiol. 54: 1112–1114, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Yuhas JM: Efficacy testing of WR-2721 in Great Britain or everything is black and white at the Grey Lab. Int. J. Radiat. Oncol. Biol. Phys. 9: 595–598, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Milas L, Hunter N, It H, Travis EL, Peters LJ: Factors influencing radioprotection of tumors by WR-2721. In: Radioprotectors and Anticarcinogens, Academic Press, N.Y., 1983, pp. 675–718.

    Google Scholar 

  29. Brandt EL, Griffin AC: Reduction of toxicity of nitrogen mustards by cysteine. Cancer 4: 1030–1035, 1951.

    Article  PubMed  CAS  Google Scholar 

  30. Therkelsen AJ: Protective effect of cysteamine on mice injected with nitrogen mustard. In: Progress in Radiobiology, JS Mitchell, BE Holmes, CL Smith (eds), Oliver and Boyd, London, 1956, pp. 260–266.

    Google Scholar 

  31. Therkelsen AJ: Studies on the protective action of cysteamine and related compounds against nitrogen mustard (HN2) injected into mice. Acta. Radiol. 49: 49–65, 1957.

    Google Scholar 

  32. Peczenik O: Influence of cysteineamine, methylamine and cortisone on the toxicity and activity of nitrogen mustard. Nature 172: 454–455, 1953.

    Article  PubMed  CAS  Google Scholar 

  33. Therkelsen AJ: Studies on the mechanism of the protective action of sulphydryl compounds and amines against nitrogen mustard (HN2) and roentgen irradiation in mice. Biochem. Pharmacol. 1: 258–266, 1958.

    Article  Google Scholar 

  34. Therkelsen AJ: Combined treatment of a transplantable mouse tumour with cysteamine (B-mercaptoethylamine) and nitrogen mustard (HN2). Biochem. Pharmacol. 1: 245–257, 1958.

    Article  Google Scholar 

  35. Yuhas JM: Differential protection of normal and malignant tissues against the cytotoxic effects of mechlorethamine. Cancer Treat. Rep. 63: 971–976, 1979.

    PubMed  CAS  Google Scholar 

  36. Yuhas JM, Spellman JM, Jordan SW et al: Treatment of tumours with the combination of WR-2721 and cis-dichlor-odiammineplatinum (11) or cyclophosphamide. Brit. J. Cancer 42: 574–585, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Wasserman TH, Phillips TL, Ross G, Kane LJ: Differential protection against cytotoxic chemotherapeutic effects on bone marrow CFUs by WR-2721. Cancer Clin. Trials 4: 3–6, 1981.

    PubMed  CAS  Google Scholar 

  38. Utley JF, Phillips TL, Kane LJ: Protection of normal tissues by WR-2721 during fractionated irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1: 679–703, 1976.

    Article  Google Scholar 

  39. Phillips T: Rationale for initial clinical trials and future development of radioprotectors. Cancer Clin. Trials 3: 165–173, 1980.

    PubMed  CAS  Google Scholar 

  40. Yuhas JM: Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-amino-propylamino)-ethylphosphorothioic acid. Cancer Res. 40: 1519–1524, 1980.

    PubMed  CAS  Google Scholar 

  41. Millar JL, McElwain TJ, Clutterbuck RD, Wist EA: The modification of melphalan toxicity in tumor bearing mice by S-2-(3-aminopropylamino)-ethyl phosphorothioic acid (WR-2721). Am. J. Clin. Oncol. 5: 321–328, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Durand RE: Radioprotection by WR-2721 in vitro at low oxygen tensions: Implications for the mechanisms of action. Brit. J. Ca. 47: 387–392, 1983.

    Article  CAS  Google Scholar 

  43. Stewart FA, Rojas A: Radioprotection of mouse skin by WR-2721 in single and fractionated treatments. Brit. J. Radiol. 55: 42–47, 1982.

    Article  PubMed  CAS  Google Scholar 

  44. Travis EL: The oxygen dependence of protection by amino-thiols: Implications for normal tissues and solid tumors. Int. J. Radiat. Oncol. Biol. Phys. 10: 1495–1501, 1984.

    Article  PubMed  CAS  Google Scholar 

  45. Radiation-Protective Drugs and Their Reaction Mechanisms. Livesey JC, Reed DJ, Adamson LF (eds), Noyes Publications, New Jersey, 1985.

    Google Scholar 

  46. Valeriote F, Tolen S: Protection and potentiation of nitrogen mustard cytotoxicity by WR-2721. Cancer Res. 42: 4330–4331, 1982.

    PubMed  CAS  Google Scholar 

  47. Valeriote F, Grates HE: Dose and interval relationship for the interaction of WR-2721 and nitrogen mustard with normal and malignant cells. Int. J. Radiat. Oncol. Biol. Phys. 10: 1561–1564, 1984.

    Article  PubMed  CAS  Google Scholar 

  48. Turrisi AT, Kligerman MW, Glover DJ et al: Experience with Phase I trials of WR-2721 preceding radiation therapy. In: Radioprotectors and Anticarcinogens, Academic Press, 1983, pp. 681–694.

    Google Scholar 

  49. Glick JH, Glover D, Weiler C et al: Phase I controlled trials with WR-2721 and cyclophosphamide. Int. J. Radiat. Onc. Biol. Phys. 10: 1777–1780, 1984.

    Article  CAS  Google Scholar 

  50. Glover D, Glick JH, Weiler C et al: Phase I trials of WR-2721 and cis-platinum. Int. J. Radiat. Oncol. Biol. Phys. 10: 1781–1784, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Johnson, R., Valeriote, F. (1986). Biochemical Modulation of Anticancer Agents: An Overview. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics