Autonomic Nervous System Regulation of Heart Rate in the Perinatal Period

  • Phyllis M. Gootman
  • Howard L. Cohen
  • Norman Gootman
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 56)


In all vertebrates more advanced than elasmobranch, cardiac muscle is innervated by the autonomic nervous system [15]. There are two major divisions of the autonomic nervous system: the parasympathetic originating in the third, seventh, ninth, and tenth cranial nerves, and the sacral spinal cord region; and the sympathetic system, originating in the thoracolumbar regions of the spinal cord. For both subdivisions of the autonomic nervous system, the cells of origin within the central nervous system project to ganglia located peripherally. The cells of these ganglia send their axons to the various effector organs throughout the body. The transmitter for all preganglionic neurons is acetylcoholine (ACh), while the post ganglionic neurons of the parasympathetic nervous system are also cholinergic. With few exceptions, post-ganglionic neurons of the sympathetic nervous system are adrenergic, utilizing norepinephrine (NE) as their neurotransmitter. In all vertebrates the heart is innervated by a parasympathetic inhibitory system, and a sympathetic excitatory system.


Autonomic Nervous System Sudden Infant Death Syndrome Carotid Body Fetal Heart Rate Sympathetic Innervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adolph EF. Ontogeny of heart-rate controls in hamster, rat, and guinea pig. Am J Physiol 220:1896, 1971.PubMedGoogle Scholar
  2. 2.
    Ahlquist RP. A study of adrenotropic receptors. Am J Physiol 153:586, 1948.PubMedGoogle Scholar
  3. 3.
    Alexander RW, Galper JB, Neer EJ, Smith TW. Development of beta-adrenergic receptors in embryonic heart. Circulation 58:21, 1978.Google Scholar
  4. 4.
    Allen LG, Howard G, Smith JB, McCubbin JA, Weaver RL. Infant heart rate response to trigeminal airstream stimulation: Determination of normal and deviant values. Pediat Res 13:184, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Atwood GF, Krishner N. Postnatal development of catecholamine uptake and storage of the newborn rat heart. Dev Biol 49:532, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Barcroft J. Researches on Prenatal Life. Oxford: Blackwell, 1942.Google Scholar
  7. 7.
    Bartolome J, Lau C, Slotkin TA. Neonatal hyperthyroidism causes premature development of baroreceptor-mediated cardiac sympathetic reflexes. Dev Neurosci 5:208, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Bartolome J, Mills E, Lau C, Slotkin TA. Maturation of sympathetic neurotransmission in the rat heart. V. Development of baroreceptor control of sympathetic tone. J Pharmacol Exp Ther 215:596, 1980.PubMedGoogle Scholar
  9. 9.
    Bernard C, Gargouil YM. Acquisitions successives, chez l’embryon de rat, des permeabilities specifiques de la membrane myocardique. CR Acad Sci Paris Ser D 270: 1495, 1970.Google Scholar
  10. 10.
    Broadley KJ. Cardiac adrenoreceptors. J Auton Pharmac 2:119, 1982.CrossRefGoogle Scholar
  11. 11.
    Brown AM. Chapter 19. Cardiac reflexes. In RM Berne, N Sperelakis, SR Geiger (eds.) Handbook of Physiology, Section 2, The Cardiovascular System, Vol. I. The Heart. Bethesda: American Physiological Society, 1979, pp. 677–689.Google Scholar
  12. 12.
    Buckley NM, Brazeau P, Gootman PM. Maturation of circulatory responses to adrenergic stimuli. Fed Proc 42:(6)1643, 1983.PubMedGoogle Scholar
  13. 13.
    Buckley NM, Gootman PM, Gootman N, Reddy GD, Weaver LC, Crane LA. Age-dependent cardiovascular effects of afferent stimulation in neonatal pigs. Biol Neonate 30:268, 1976.CrossRefGoogle Scholar
  14. 14.
    Buckley NM, Gootman PM, Yellin EL, Brazeau P. Age-related cardiovascular effects of catecholamines in anesthetized piglets. Circ Res 45:282, 1979.PubMedGoogle Scholar
  15. 15.
    Burnstock G. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21:247, 1969.PubMedGoogle Scholar
  16. 16.
    Cavoto FV, Kellilher GJ. Age-induced changes in the transmembrane action potential of cardiac muscle. Fed Proc 32:811, 1973.Google Scholar
  17. 17.
    Chen F-CM, Yamamura HI, Roeske WR. Ontogeny of mammalian myocardial beta-adrenergic receptors. Eur J Pharm 58:255, 1979.CrossRefGoogle Scholar
  18. 18.
    Cheng JB, Cornett OE, Goldstein A, Robert JM. Alpha-adrenergic receptor is present in fetal, but not adult sheep myocardium. Fed Proc 39:399, 1980.Google Scholar
  19. 19.
    Church SC, Morgan BC, Oliver TK, Jr, Guntheroth WG. Cardiac arrhythmia in premature infants: An indication of autonomic immaturity. J Pediatrics 71:542, 1967.CrossRefGoogle Scholar
  20. 20.
    Cohn HE, Piasecki GJ, Jackson BT. The effect of fetal heart rate on cardiovascular function during hypoxemia. Am J Obstet Gynecol 138:1190, 1980.PubMedGoogle Scholar
  21. 21.
    Coleridge JCG, Coleridge HM. Chapter 18 Chemoreflex regulation of the heart. In Sperelakis, SR Geiger, Eds. Handbook of Physiology Section 2. Bethesda: American Physiological Society, 1979, pp. 653–676.Google Scholar
  22. 22.
    Comline RS, Fowden AL, Silver M. Carbohydrate metabolism in the fetal pig during late gestation. Quart J Exp Physiol 64:277, 1979.PubMedGoogle Scholar
  23. 23.
    Comline RS, Silver M. Catecholamine secretion by the adrenal medulla of the foetal and newborn foal. J Physiol 216:659, 1971.PubMedGoogle Scholar
  24. 24.
    Comline RS, Silver M. The development of the adrenal medulla of the foetal and newborn calf. J Physiol 183:305, 1966.PubMedGoogle Scholar
  25. 25.
    Comline RS, Silver IA, Silver M. Factors responsible for the stimulation of the adrenal medulla during asphyxia in the foetal lamb. J Physiol 178:211, 1965.PubMedGoogle Scholar
  26. 26.
    Culver NG, Fischman DA. Pharmacological analysis of sympathetic function in the embryonic chick heart. Am J Physiol 232: R116, 1977.PubMedGoogle Scholar
  27. 27.
    Daly M deB, Eisner R, Angell-James JE. Cardiorespiratory control by the carotid chemoreceptors during experimental dives in the seal. Am J Physiol 232:H508, 1977.Google Scholar
  28. 28.
    Daly M deB, Scott MJ. The cardiovascular effects of hypoxia in the dog with special reference to the contribution of the carotid body chemoreceptor. J Physiol 173:201, 1964.Google Scholar
  29. 29.
    Daly M deB, Angell-James JE, Eisner R. The diving response. Possible clinical implications. Practitioner 222:19, 1979.Google Scholar
  30. 30.
    Daly M deB, Angell-James JE, Eisner R. Role of carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet 1:764, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Danilo P, Reder R, Mill J, Petrie R. Developmental changes in cellular electrophysiologic characteristics and catecholamine content of fetal hearts. Circulation 60:11, 1979.Google Scholar
  32. 32.
    Downing SE. Chapter 17 Baroreceptor regulation of the heart. In RM Berne, N. Sperelakis, SR Geiger (Eds.) Handbook of Physiology, Section 2, The Cardiovascular System, Vol. 1, The Heart. Bethesda: American Physiological Society, 1979 pp. 621–652.Google Scholar
  33. 33.
    Downing SE, Lee JD. Laryngeal chemosensitivity: A possible mechanism for sudden infant death. Pediatrics 55:640, 1975.PubMedGoogle Scholar
  34. 34.
    Driscoll DJ, Fukushige J, Lewis RM, Hartley CJ, Entman MJ. The comparative hemodynamic effects of propranolol in chronically instrumented puppies and adult dogs. Biol Neonate 41:8, 1982.PubMedCrossRefGoogle Scholar
  35. 35.
    Driscoll DJ, Gillette PC, Lewis RM, Hartley CJ, Schwartz A. Comparative hemodynamic effects of isoproterenol, dopamine and dobutamine in newborn dogs. Pediatr Res 13:1006, 1979.PubMedCrossRefGoogle Scholar
  36. 36.
    Duncan PG, Gregory GA, Wade JD. The effect of nitrous oxide on baroreceptor function in newborn and adult rabbits. Can Anaesth Soc J 28:339, 1981.PubMedCrossRefGoogle Scholar
  37. 37.
    Edwards AV. Adrenal catecholamine output in response to stimulation of the splanchnic nerve in bursts in the conscious calf. J Physiol 327:409, 1982.PubMedGoogle Scholar
  38. 38.
    Elsner R. Asphyxial survival: Diving seals and fetal lambs. In LD Longo and DD Reneau (eds.), Fetal and Newborn Cardiovascular Physiology, Vol. 2, Fetal and Newborn Circulation. Garland STPM Press. New York: 1978, pp. 399–341.Google Scholar
  39. 39.
    Elsner R, Angell-James JE, Daly M deB. Carotid body chemoreceptor reflexes and their interactions in the seal. Am J Physiol 232:H517, 1977.PubMedGoogle Scholar
  40. 40.
    Fauquet M, Smith J, Ziller C, Le Douarin NM. Differentiation of autonomic neuron precursors in vitro: Cholinergic and adrenergic traits in cultured neural crest cells. J Neuroscience 1:478, 1981.Google Scholar
  41. 41.
    Felder RA, Calcagno PI, Eisner GM, Jose PA. Ontogeny of myocardial adrenoceptors. II. Alpha adrenoceptors. Pediat Res 16:340, 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Friedman WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 15:87, 1972.PubMedCrossRefGoogle Scholar
  43. 43.
    Furchgott RS. The pharmacological differentiation of adrenergic receptors. Ann NY Acad Sci 139:553, 1967.PubMedCrossRefGoogle Scholar
  44. 44.
    Furchgott RS. Pharmacological characteristics of adrenergic receptors. Fed Proc 29:1352, 1970.PubMedGoogle Scholar
  45. 45.
    Furchgott RS. The classification of the adrenoreceptors (Adrenergic receptors). An evaluation from the standpoint of receptor theory. In H Blaschko and E Muscholl (eds.), Handbook of Experimental Pharmacology, Vol. 33. Berlin: Springer Verlag, 1972, pp. 283–335.Google Scholar
  46. 46.
    Gauthier P, Nadeau RA, De Champlain J. The development of sympathetic innervation and the functional state of the cardiovascular system in newborn dogs. Can J Physiol Pharm 53:763, 1975.CrossRefGoogle Scholar
  47. 47.
    Geis WP, Tatooles CJ, Priola DV, Friedman WF. Factors influencing neurohumoral control of the heart in the newborn dog. Am J Physiol 228:1685, 1975.PubMedGoogle Scholar
  48. 48.
    Gershon MD, Payette RF, Rothman TP. Development of the enteric nervous system. Fed Proc, 42:1620, 1983.PubMedGoogle Scholar
  49. 49.
    Gootman N, Buckley BJ, Gootman PM, Griswold PG, Mele JD. Maturation-related differences in regional circulatory effects of dopamine infusion in swine. Develop Pharmacol Ther 6:9, 1983.Google Scholar
  50. 50.
    Gootman N, Buckley BJ, Gootman PM, Nagelberg JS. Age-related effects of single injections of dopamine on cardiovascular function in developing swine. Develop Pharmacol Ther 4:139, 1982.Google Scholar
  51. 51.
    Gootman N, Gootman PM, Buckley NM, Cohen MA, Levine M, Spielberg R. Central vasomotor regulation in the newborn piglet (Sus Scrofa). Am J Physiol 222:994, 1972.PubMedGoogle Scholar
  52. 52.
    Gootman N, Gootman PM, Crane LA, Buckley BJ. Integrated cardiovascular responses to combined somatic and visceral afferent stimulation in newborn piglets. Biol Neonate, 36:70, 1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Gootman PM, Neural regulation of cardiovascular function in the perinatal period In N Gootman and PM Gootman (eds.), Perinatal Cardiovascular Function. New York: Marcel Dekker, 1983, pp. 265–328.Google Scholar
  54. 54.
    Gootman PM, Buckley NM, Gootman N. Postnatal maturation of the central neural cardiovascular regulatory system. In LD Longo and DD Reneau (eds.) Fetal and Newborn Cardiovascular Physiology, Vol. I. Developmental Aspects. New York: Garland STPM Press, 1978, pp. 93–152.Google Scholar
  55. 55.
    Gootman PM, Buckley NM, Gootman N. Postnatal maturation of neural control of the circulation. In EM Scarpelli and EV Cosmi (eds.), Reviews in Perinatal Medicine, Vol. 3. New York: Raven Press, 1979, pp. 1–72.Google Scholar
  56. 56.
    Gootman PM, Buckley NM, Gootman N, Crane LA, Buckley BJ. Integrated cardiovascular responses to combined somatic afferent stimulation in newborn piglets. Biol Neonate 34:187, 1978.PubMedCrossRefGoogle Scholar
  57. 57.
    Gootman PM, Gootman N, Buckley BJ. Maturation of central autonomic control of the circulation. Fed Proc 42:1648, 1983.PubMedGoogle Scholar
  58. 58.
    Gootman PM, Gootman N, Turlapaty PDMV, Yao AC, Buckley BJ, Altura BM. Autonomic regulation of cardiovascular function in neonates In: Development of the Autonomic Nervous System. Ciba Foundation Symposium #83, Pitman Medical, 1981, pp. 70–86.Google Scholar
  59. 59.
    Gregory GA. The baroresponses of preterm infants during halothane anesthesia. Can Anaesth Soc J 29:105, 1982.PubMedCrossRefGoogle Scholar
  60. 60.
    Gyevai A. Comparative histochemical investigations concerning prenatal and postnatal cholinesterase activity in the hearts of chickens and rats. Acta Biol Acad Sci Hung 20:253, 1969.PubMedCrossRefGoogle Scholar
  61. 61.
    Hall EK. Acetylcholine and epinephrine effects on the embryonic rat heart. J Cell Comp Physiol 49:187, 1957.CrossRefGoogle Scholar
  62. 62.
    Hamilton J, Moodie D, Levy J. The use of the diving reflex to terminate supraventricular tachycardia in a 2-week-old infant. Am Heart J 97:371, 1979.PubMedCrossRefGoogle Scholar
  63. 63.
    Harding R, Johnson P, McClelland ME. Liquid-sensitive laryngeal receptors in the developing sheep, cat, and monkey. J Physiol 277:409, 1978.PubMedGoogle Scholar
  64. 64.
    Harris JL, Krueger TR, Parer JT. Mechanisms of late decelerations of the fetal heart rate during hypoxia. Am J Obstet Gynecol 144:491, 1982.PubMedGoogle Scholar
  65. 65.
    Harris WH, Van Petten GR. The effects of dopamine on blood pressure and heart rate of the unanesthetized fetal lamb. Am J Obstet Gynecol 130:211, 1978.PubMedGoogle Scholar
  66. 66.
    Harris WH, Van Petten GR. Development of cardiovascular responses to noradrenalin, adrenalin, normetanephrine and metanephrine in the unanesthetized fetus. Can J Physiol Pharmacol 57:242, 1979.PubMedCrossRefGoogle Scholar
  67. 67.
    Hervonen A. Development of catecholamine-storing cells in human fetal paraganglia and adrenal medulla. Acta Physiol Scand 83 :Suppl. 368, 1971.Google Scholar
  68. 68.
    Higgins D, Pappano AJ. Developmental changes in the sensitivity of the chick embryo ventricle to beta-adrenergic agonist during adrenergic innervation. Circ Res 48:245, 1981.PubMedGoogle Scholar
  69. 69.
    Higgins D, Pappano AJ. Development of transmitter secretory mechanisms by adrenergic neurons in the embryonic chick heart ventricle. Dev Biol 87:148, 1981.PubMedCrossRefGoogle Scholar
  70. 70.
    Hilton SM, Marshall JM. The pattern of cardiovascular response to carotid chemoreceptor stimulation in the cat. J Physiol 326:495, 1982.PubMedGoogle Scholar
  71. 71.
    Ignarro LJ, Shideman FE. Catechol-O-methyl transferase and monoamine oxidase activities in the heart and liver of the embryonic and developing chick. J Pharmacol Exp Ther 159:29, 1968.PubMedGoogle Scholar
  72. 72.
    Ikenoue T, Martin CB Jr, Murata Y, Ettinger BB, Lu PS. Effect of acute hypoxemia and respiratory acidosis on the fetal heart rate in monkeys. Am J Obstet Gynecol 141:797, 1981.PubMedGoogle Scholar
  73. 73.
    Itskovitz J, Goetzman BW, Rudolph AM. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs. Am J Obstet Gynecol 142:66, 1982.PubMedGoogle Scholar
  74. 74.
    Itskovitz J, Rudolph AM. Denervation of arterial chemoreceptors and baroreceptors in fetal lambs in utero. Am J Physiol 242:H916, 1982.PubMedGoogle Scholar
  75. 75.
    Kalia M. Visceral and somatic reflexes produced by J pulmonary receptors in newborn kittens. J Appl Physiol 41:1, 1976.PubMedGoogle Scholar
  76. 75a.
    Kenigsberg K, Griswold PG, Buckley BJ, Gootman N. Cardiac effects of esophageal stimulation: Possible relationship between gastroesophageal reflux (GER) and sudden infant death syndrome (SIDS). J Pedia Surg 1983, 18:542.CrossRefGoogle Scholar
  77. 76.
    Kindley AD, Harris F. Heart rate changes during gavage feeding of neonates. Early Human Develop 4:387, 1980.CrossRefGoogle Scholar
  78. 77.
    Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev 56:100, 1976.PubMedGoogle Scholar
  79. 78.
    Kralois FA, Millar CK. Functional development of cardiac sympathetic nerves in newborn dogs: evidence for asymmetrical development. Cardiovasc Res 12:547, 1978.CrossRefGoogle Scholar
  80. 79.
    Kunos G. Thyroid hormone-dependent interconversion of myocardial alpha- and beta- adrenoceptors in the rat. Br J Pharmacol 59:177, 1977.PubMedGoogle Scholar
  81. 80.
    Kunos G, Nickerson M Temperature-induced interconversion of alpha- and beta- adrenoceptors in the frog heart. J Physiol 256:23, 1976.PubMedGoogle Scholar
  82. 81.
    LaGamma EF, Itskovitz J, Rudolph AM. Effects of naloxone on fetal circulatory responses to hypoxemia. Am J Obstet Gynecol 143:933, 1982.PubMedGoogle Scholar
  83. 82.
    Landis SC, Development of cholinergic sympathetic neurons. 42:1633, 1983.Google Scholar
  84. 83.
    Landis SC, Patterson PM. Neural crest cell lineages. Trends in Neurosci 2:172, 1981.CrossRefGoogle Scholar
  85. 84.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG, Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597, 1967.PubMedCrossRefGoogle Scholar
  86. 85.
    Langer GA, Brady AJ, Tan ST, Serena SA. Correlation of the glycoside response, the force staircase and the action potential configuration in the neonatal rat heart. Circ Res 36:744, 1975.PubMedGoogle Scholar
  87. 86.
    Lau C, Burke SP, Slotkin TA. Maturation of sympathetic neurotransmission in the rat heart. IX Development of transsynaptic regulation of cardiac adrenergic sensitivity. J Pharmacol Exp Ther 223:675, 1982.PubMedGoogle Scholar
  88. 87.
    Lau C, Slotkin TA. Maturation of sympathetic neurotransmission in the rat heart II. Enhanced development of presynaptic and postsynaptic components of noradrenergic synapses as a result of neonatal hyperthyroidism. J Pharmacol Exp Ther 212:126, 1980.PubMedGoogle Scholar
  89. 88.
    Lau C, Slotkin TA. Accelerated development of rat sympathetic neurotransmission caused by neonatal triiodothyronine administration. J Pharmacol Exp Ther 208:485, 1979.PubMedGoogle Scholar
  90. 89.
    Lebowitz EA, Novick JS, Rudolph AM. Development of myocardial sympathetic innervation in the fetal lamb. Pediat Res, 6:887, 1972.PubMedCrossRefGoogle Scholar
  91. 90.
    Le Douarin NM. Plasticity in the development of the peripheral nervous system. In Development of the Autonomic Nervous System. Ciba Foundation Symposium, #83, Pitman Medical 1981, pp. 19–45.Google Scholar
  92. 91.
    Le Douarin NM. Migration and differentiation of neural crest cells. Curr Top Dev Biol 16:31, 1980.PubMedCrossRefGoogle Scholar
  93. 92.
    Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31, 1973.PubMedGoogle Scholar
  94. 93.
    Lee JC, Fripp RR, Down SE. Myocardial responses to alpha-adrenoceptor stimulation with methoxamine hydrochloride in lambs. Am J Physiol 242:H405, 1982.PubMedGoogle Scholar
  95. 94.
    Lee JC, Werner JC, Downing SE. Adrenal contribution to cardiac responses elicited by acute hypoxia in piglets. Am J Physiol 239:H751, 1980.PubMedGoogle Scholar
  96. 95.
    Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437, 1971.PubMedGoogle Scholar
  97. 96.
    Levy MN, Blattberg G. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 38:81, 1976.PubMedGoogle Scholar
  98. 97.
    Levy MN, Martin PJ. Chapter 16. Neural control of the heart. In RM Berne, N Sperelakis and SR Geiger (eds.) Handbook of Physiology, Section 1, The Cardiovascular System, Vol. I The Heart. Bethesda: American Physiological society, 1979, pp. 581–620.Google Scholar
  99. 98.
    Lewis AB, Donovan MD, Platzker ACG. Cardiovascular responses to autonomic blockade in hypoxemic fetal lambs. Biol Neonate 37:233, 1980.PubMedCrossRefGoogle Scholar
  100. 99.
    Linden RJ. Function of nerves of the heart. Cardiovasc Res 6:605, 1972.PubMedCrossRefGoogle Scholar
  101. 100.
    Linden RJ. Reflexes from the heart. Prog Cardiovasc Dis 18:201, 1975.CrossRefGoogle Scholar
  102. 101.
    Linden RJ. Reflexes from receptors in the heart. Cardiology 61:Suppl. 1, 7, 1976.Google Scholar
  103. 102.
    Lipp JA, Rudolph AM. Sympathetic nerve development in the rat and guinea pig heart. Biol Neonate 21:76, 1982.Google Scholar
  104. 103.
    Lipton EL, Steinschneider A, Richmond JB. Autonomic function in the neonate VIII. Cardiopulmonary observation. Pediatrics 33:212, 1964.PubMedGoogle Scholar
  105. 104.
    Lipton EL, Steinschneider A, Richmond JB. The autonomic nervous system in early life. N Engl J Med 273:147, 1965.PubMedCrossRefGoogle Scholar
  106. 105.
    Lipton EL, Steinschneider A, Richmond JB Autonomic function in the neonate. VII Maturational changes in cardiac control. Child Dev 37:1, 1966.CrossRefGoogle Scholar
  107. 106.
    Loffelholz K, Pappano AJ. Increased sensitivity of sinoatrial pacemaker to acetylcholine and to catecholamines at the onset of autonomic neuroeffector transmission in chick embryo heart. J Pharm Exp Ther 191:479, 1974.Google Scholar
  108. 107.
    Loggie JMH. Growth and development of the autonomic nervous system. In Scientific Foundations of Paediatrics. JA Davis and J Dobbing (eds.), Baltimore: University Park Press, 1982, pp. 842–850.Google Scholar
  109. 108.
    MacDonald AA, Colenbrander B. Cardiovascular responses of the fetal pig to autonomic stimulation. In AGB Kovach, E Monos, and G Rubarry (eds.) Oxford : Pergamon Press, Advances in Physiological Sciences, Vol. 8, Cardiovascular Physiology: Heart, Peripheral Circulation and Methodology. 1981, pp. 319–325.Google Scholar
  110. 109.
    MacDonald AA, Colenbrander B, Meyer JC, Poot P, Wensing CJG. Development of innervation to the heart of the pig fetus. Acta Morph Neerl Scand 19:257, 1981.Google Scholar
  111. 110.
    MacDonald AA, Ilanos AJ, Heymann MA, Rudolph AM. Cardiovascular responsiveness of the pig fetus to autonomic blockade. Pfluger’s Arch Ges Physiol 390:262, 1981.CrossRefGoogle Scholar
  112. 111.
    MacDonald AA, Rose J, Heymann MA, Rudolph AM. Heart rate response of fetal and adult sheep to hemorrhage stress. Am J Physiol 239:H789, 1980.PubMedGoogle Scholar
  113. 112.
    Mace SE, Levy MN. Neural control of heart rate. A comparison of puppies and adult animals. Pediatr Res 17:491, 1983.PubMedCrossRefGoogle Scholar
  114. 113.
    Mace SE, Levy MN. Autonomic nervous control of heart rate in dogs. Sympathetic-parasympathetic interactions and age related differences. Cardiovasc Res 17:547, 1983.PubMedCrossRefGoogle Scholar
  115. 114.
    Manders WT, Pagani M, Vatner SF. Depressed responsiveness to vasoconstrictor and dilator agents and baroreflex sensitivity in conscious, newborn lambs. Circulation 60:945, 1979.PubMedGoogle Scholar
  116. 115.
    Marchal F, Corke BC, Sundell H. Reflex apnea from laryngeal chemo-stimulation in the sleeping premature newborn lamb. Pediatr Res 16:621, 1982.PubMedCrossRefGoogle Scholar
  117. 116.
    Mueller-Heubach E, Battelli AF. Variable heart rate decelerations and transcutaneous PO2 during umbilical cord occlusion in fetal monkeys. Am J Obstet Gynecol 144:796, 1982.PubMedGoogle Scholar
  118. 117.
    Mueller-Heubach E, Meyers RE, Adamsons K. Fetal heart rate and blood pressure during prolonged partial asphyxia in the rhesus monkey. Am J Obstet Gynecol 137:48, 1980.PubMedGoogle Scholar
  119. 118.
    Navaratnam F. The ontogenesis of cholinesterase activity within the heart and cardiac ganglia in man, rat, rabbit and guinea-pig. J Anat 99:459, 1965.PubMedGoogle Scholar
  120. 119.
    Noble A. Chronotropic actions of autonomic nervous transmitters. In The Initiation of the Heartbeat Oxford: Clarendon Press, 1975, pp. 103–117.Google Scholar
  121. 120.
    Noguchi A, Whitsett JA. Ontogeny of alpha1-adrenergic receptors in the rat myocardium: Effects of hypothyroidism. Eur J Pharmacol 86:43, 1983.CrossRefGoogle Scholar
  122. 121.
    Noguchi A, Whitsett JA, Dichman L. Ontogeny of myocardial alpha1-adrenergic receptor in the rat. Dev Pharmacol Ther 3:179, 1981.PubMedGoogle Scholar
  123. 122.
    Nuwayhid B, Brinkman CR III, Su C, Bevan JA, Assali NS. Systemic and pulmonary hemodynamic responses to adrenergic and cholinergic agonists during fetal development. Biol Neonate 26:301, 1975.PubMedCrossRefGoogle Scholar
  124. 123.
    Paintal AS. Mechanism of stimulation of type J pulmonary receptors. J Physiol 203:511, 1969.PubMedGoogle Scholar
  125. 124.
    Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev 53:159, 1973.PubMedGoogle Scholar
  126. 125.
    Paintal AS. Effects of drugs on chemoreceptors, pulmonary and cardiovascular receptors. Pharmacol Ther 3:41, 1977.Google Scholar
  127. 126.
    Pappano AJ. Development of autonomic neuroeffector transmission in the chick embryo heart In M Liberman and T Sano (eds.), Developmental and Physiological Correlates of Cardiac Muscle. New York: Raven Press, 1975, pp. 235–248.Google Scholar
  128. 127.
    Pappano AJ. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev 29:3, 1977.PubMedGoogle Scholar
  129. 128.
    Pappano AJ. Adrenoceptors and adrenergic mechanisms in the embryonic and fetal heart. In G Kunos (ed.), Adrenoceptors and Catecholamine Action, Vol. I. New York: John Wiley and Sons, Inc., 1981, pp. 69–97.Google Scholar
  130. 129.
    Patterson PM. Environmental determination of autonomic neurotransmitter functions. Ann Rev Neurosci 1:1, 1978.PubMedCrossRefGoogle Scholar
  131. 130.
    Penefsky ZA, Perinatal development of cardiac contractile mechanisms. In N Gootman, PM Gootman (eds.), Perinatal Cardiovascular Function. New York: Marcel Dekker, 1983. pp. 109–198.Google Scholar
  132. 131.
    Perkett EA, Vaughan RL. Evidence for a laryngeal chemoreflex in some human preterm infants. Acta Paediatr Scand 71:969, 1982.PubMedCrossRefGoogle Scholar
  133. 132.
    Potter DD, Landis SC, Furshpan EJ. Adrenergic-cholinergic dual function in cultured sympathetic neurons of the rat. In Development of the Autonomic Nervous System. Ciba Foundation Symposium 83, London, Pitman Medical, 1981, pp. 123–138.Google Scholar
  134. 133.
    Reddy GD, Gootman N, Buckley NM, Gootman PM, Crane L. Regional blood flow changes in neonatal pigs in response to hypercapnia, hemorrhage and sciatic nerve stimulation Biol Neonate 25:249, 1974.PubMedCrossRefGoogle Scholar
  135. 134.
    Robillard JE, Gomez RA, Meernik JG, Kuehl WD, Van Orden D. Role of angiotensin II on the adrenal and vascular responses to hemorrhage during development in fetal lambs. Circ Res 50:645, 1982.PubMedGoogle Scholar
  136. 135.
    Rockson SG, Homcy CJ, Quinn P, Manders WT, Haber E, Vatner SF. Cellular mechanism of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest 67:319, 1981.PubMedCrossRefGoogle Scholar
  137. 136.
    Romanoff AL. The Avian Embryo: Structural and Functional Development. New York: MacMillan Co., 1960.Google Scholar
  138. 137.
    Rosen MR, Reder RF, Electrophysiology of the fetal and neonatal heart. In N Gootman, PM Gootman (eds.) Perinatal Cardiovascular Function. New York: Marcel Dekker, 1983, pp. 201–205.Google Scholar
  139. 138.
    Rosen MR, Hordof AJ, Ilvento J, Danilo P. Effects of adrenergic amines on electrophysiological properties and automaticity of neonatal and adult canine cardiac Purkinje fibers. Circ Res 40:390, 1977.PubMedGoogle Scholar
  140. 139.
    Saarikoski S. Development of noradrenaline uptake in the human foetal heart. Experientia 33:251, 1977.PubMedCrossRefGoogle Scholar
  141. 140.
    Schifferli PY, Caldeyro-Barcia R. Effects of atropine and beta adrenergic drugs on the heart rate of the human fetus. In LO Borens (eds.). Fetal Pharmacology New York: Raven Press, 1975, pp. 259–279.Google Scholar
  142. 141.
    Schleman M, Gootman N, Crane LA. The juxtacapillary-pulmonary receptor in the piglet. NY Acad Sci 42:501, 1976.Google Scholar
  143. 142.
    Schleman M, Gootman N, Gootman PM. Cardiovascular and respiratory responses to right atrial injection of phenyl diguanide in newborn piglets. Pediatr Res 13:1271, 1979.PubMedCrossRefGoogle Scholar
  144. 143.
    Schwartz PJ. The Sudden Infant Death syndrome. In EM Scarpelli and EV Cosmi (eds.), Reviews in Perinatal Medicine, Volume 4. New York: Raven Press, 1981, pp. 475–524.Google Scholar
  145. 144.
    Shinebourne EA, Vapaavuro EK, Williams RL, Heymann MA, Rudolph AM. Development of baroreflex activity in unanesthetized fetal and neonatal lambs. Circ Res 31:710, 1972.PubMedGoogle Scholar
  146. 145.
    Siedler FJ, Slotkin TA. Presynaptic and postsynaptic control of heart rate in the preweanling rat. Br J Pharm 65:431, 1979.Google Scholar
  147. 146.
    Sinha SN, Yelich MR, Keresztes-Nagy S, Frankfater A. Regional distributions of acetylcholinesterase in the right atria of humans and dogs. Pediatr Res 13:1217, 1979.PubMedCrossRefGoogle Scholar
  148. 147.
    Slavikova I, Tucek S. Postnatal changes of the tonic influence of the vagus nerves on the heart rate and on the activity of choline acetyltransferase in the heart atria of rats. Physiol Bohemoslav 31:113, 1982.Google Scholar
  149. 148.
    Slotkin TA, Smith PG, Lau C, Bareis DL. Functional aspects of development of catecholamine biosynthesis and release in the sympathetic nervous system. In S Parvez and H Parvez (eds.), Biogenic Amines in Development. Amsterdam: Elsevier/North Holland, 1980, pp. 29–48.Google Scholar
  150. 149.
    Smith RB. The occurrence and location of intrinsic cardiac ganglia and nerve plexuses in human neonate. Anat Rec 169:33, 1970.CrossRefGoogle Scholar
  151. 150.
    Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreceptor sensitivity. Circ Res 24:109, 1969.PubMedGoogle Scholar
  152. 151.
    Standen NB. The postnatal development of adrenoreceptor responses to agonists and electrical stimulation in rat isolated atria. Br J Pharmacol. 64:83, 1978.PubMedGoogle Scholar
  153. 152.
    Stanton HC, Cornejo RA, Mersmann HJ, Brown LJ, Mueller RL. Ontogenesis of monoamine oxidase and catechol-o-methyl transferase in various tissues of domestic swine. Arch Intern Pharmacodyn 213:128, 1975.Google Scholar
  154. 153.
    Stanton HC, Phinney G, Mueller RL. Ontogenesis of choline acetyl transferase, tyrosine hydroxylase, monoamine oxidase and catechol-o-methyl transferase in the superior cervical ganglia of swine. Biochem Pharmacol. 23:3423, 1974.PubMedCrossRefGoogle Scholar
  155. 154.
    Stanton HC, Mersmann HJ. Development of cardiac beta-adrenergic receptors in swine. Fed Proc 38:361, 1979.Google Scholar
  156. 155.
    Stanton HC, Woo SK. Development of adrenal medullary function in swine. Am J Physiol 234:E137, 1978.PubMedGoogle Scholar
  157. 156.
    Thoren P. Role of cardiac vagal C-fibers in cardiovascular control. Rev Physiol Biochem Pharmacol 86:1, 1979.PubMedCrossRefGoogle Scholar
  158. 157.
    Toubas PL, Silverman NH, Heymann MA, Rudolph AM. Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Physiol 240:H45, 1981.PubMedGoogle Scholar
  159. 158.
    Urthaler F, Walker AA, James TN. Changing negative inotropic effect of acetylcholine in maturing canine cardiac tissue. Am J Physiol 238:H1–H7, 1980.PubMedGoogle Scholar
  160. 159.
    Vatner SF, Manders WT. Depressed responsiveness of the carotid sinus reflex in conscious newborn animals. Am J Physiol 237:1140, 1979.Google Scholar
  161. 160.
    Ville J. Cholinesterases and postnatal development of the negative chronotropic effects of acetylcholine in albino rats. Physiol Biochem 30:497, 1981.Google Scholar
  162. 161.
    Waldman S, Krauss AN, Auld PAM. Baroreceptors in preterm infants: Their relationship to maturity and disease. Develop Med Child Neurol 21:714, 1979.PubMedCrossRefGoogle Scholar
  163. 162.
    Walker AM, Cannata JP, Dowling MH, Ritchie BC, Mahoney JE. Age-dependent pattern of autonomic heart rate control during hypoxia in fetal and newborn lambs. Biol Neonate 35:198, 1979.PubMedCrossRefGoogle Scholar
  164. 163.
    Walker D. Functional development of the autonomic innervation of the human fetal heart. Biol Neonate 25:31, 1975.Google Scholar
  165. 164.
    Wear R, Robinson S. Gregory GA. The effect of halothane on the baroresponse of adult and baby rabbits. Anesthesiology 56:188, 1982.PubMedCrossRefGoogle Scholar
  166. 165.
    Weston JA. Neural crest cell development In Embryonic Development, Part B, Cellular Aspects. New York: AR Liss, 1982, pp. 359–379.Google Scholar
  167. 166.
    Wennergren G, Wennergren M. Respiratory effects elicited in newborn animals via the central chemoreceptors. Acta Physiol Scand 108:309, 1980.PubMedCrossRefGoogle Scholar
  168. 167.
    Wensing CJG. The Conductive System and its Nervous Component in the Pig’s Heart. Ph.D. Thesis, Utrecht, Netherlands, 1964.Google Scholar
  169. 168.
    Whitsett JA, Pollinger J, Maty S. Beta-adrenergic receptors and catecholamine sensitive adenylate cyclase in developing rat ventricular myocardium: Effect of thyroid status. Pediatr Res 16:463, 1982.PubMedGoogle Scholar
  170. 169.
    Wildenthal K. Maturation of responsiveness to cardioactive drugs: Differential effects of acetylcholine, norepinephrine theophylline, tyramine, glucagon and dibutyryl cyclic AMP on atrial rate in hearts of fetal mice. J Clin Invest 52:2250, 1973.PubMedCrossRefGoogle Scholar
  171. 170.
    Wildenthal K, Atkins JM. Use of the “diving reflex” for the treatment of paroxysmal supraventricular tachycardia. Am Heart J 98:536, 1979.PubMedCrossRefGoogle Scholar
  172. 171.
    Willcourt RJ, King JC, Indyk L, Queenan JT. The relationship of fetal heart rate patterns to the fetal transcutaneous PO2. Am J Obstet Gynecol 140:760, 1981.PubMedGoogle Scholar
  173. 172.
    Winter ST, Samueloff M, Cohen NJ, Porges A, Gross E. Neonatal cardiac deceleration on suckle feeding. Am J Dis Child 112:11, 1966.PubMedGoogle Scholar
  174. 173.
    Woods JR, Jr, Dandavino A, Murayama K, Brinkman CR III, Assali NS. Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circulation Res 40:401, 1977.PubMedGoogle Scholar
  175. 174.
    Zanini B, Paul, RH, Huey JR. Intrapartum fetal heart rate: Correlation with scalp pH in the preterm fetus. Am J Obstet Gynecol 136:43, 1980.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing 1987

Authors and Affiliations

  • Phyllis M. Gootman
  • Howard L. Cohen
  • Norman Gootman

There are no affiliations available

Personalised recommendations