Role of DNA in Brain Information Processing

  • A. Giuditta
  • M. V. Ambrosini
  • F. Morelli
  • C. Perrone Capano
  • T. Menna
  • C. Buono
  • C. Lamberti
  • A. Cerbone
  • A. Sadile
Part of the Topics in the Neurosciences book series (TNSC, volume 3)

Abstract

In the adult rat, brain DNA is in a state of turnover, which also involves a neuronal perikaryal fraction. Brain DNA synthesis is modulated by learning in upward or downward shifts, depending on the nature of the learning task. The concentration of radioactive brain DNA synthesized during training is inversely dependent on the amount of post-training paradoxical sleep, but only in non-learning rats. These results are taken as evidence that brain DNA is synthesized during learning in relation to the process of information storage, and may eventually be degraded in relation to the removal of that information. The latter process requires paradoxical sleep, and occurs if the information proves to be without adaptive value. It is proposed that transposition mechanisms underly the observed brain DNA turnover and the corresponding events of information processing. The data also support the sequential hypothesis of sleep function, which holds that the information gathered by brain during wakefulness is processed during sleep in two major steps occurring sequentially during synchronized and pardoxical sleep.

Keywords

Cage Thymidine Lewin Diphenylamine Midine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Komitiani, P.A., Aleksidze, N.G. and Llein, E.E. Progr. Neurobiol. 18: 181–229, 1982.CrossRefGoogle Scholar
  2. 2.
    Dunn, A. In: Molecular Approaches to Neurobiology (Ed. I.R. Brown), Academic Press, New York, 1982, pp. 317–340.Google Scholar
  3. 3.
    McGrath, M.H. and Cohen, D.B. Physiol. Bull. 85: 24–57, 1978.Google Scholar
  4. 4.
    Perlman, C.A. Neurosci. Biobehav. Rev. 3: 57–68, 1979.CrossRefGoogle Scholar
  5. 5.
    Giuditta, A., Perrone Capano, C. and Grassi Zucconi, G. In: Handbook of Neurochemistry, 2nd edition (Ed. A. Lajtha), Plenum Press, New York, Vol. 8, 1984, pp. 443–476.Google Scholar
  6. 6.
    Karnovsky, M.L. and Reich, P. In: Advances in Neurochemistry (Eds. B.W. Agranoff and M.H. Aprison), Plenum Press, New York, Vol. 2, 1977, pp. 213–275.Google Scholar
  7. 7.
    Giuditta, A. In: Sleep 84 (Eds. W.P. Koella, E. Ruther and H. Schulz), Fischer Verlag, Stuttgart (in press).Google Scholar
  8. 8.
    Giuditta, A., Libonati, M., Packard, A. and Prozzo, N. Brain Res. 25: 55–62, 1971.PubMedCrossRefGoogle Scholar
  9. 9.
    De Marianis, B. and Giuditta, A. Brain Res. 154: 134–136, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    De Marianis, B., Olmo, E. and Giuditta, A. J. Comp. Neurol. 186: 293–300, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Pelc, S.R. Intern. Rev. Cytol. 32: 327–355, 1972.CrossRefGoogle Scholar
  12. 12.
    Perrone Capano, C., D’Onsfrio, G. and Giuditta, A. J. Neurochem. 38: 52–56, 1982.CrossRefGoogle Scholar
  13. 13.
    Merits, I. and Cain, J. Biochim. Biophys. Acta 209: 327–338, 1970.PubMedGoogle Scholar
  14. 14.
    Kimberlin, R.H., Shirt, D.B. and Collis, S.C. J. Neurochem. 23: 241–248, 1979.CrossRefGoogle Scholar
  15. 15.
    Giuditta, A., Abrescia, P. and Rutigliano, B. J. Neurochem. 31: 983–987, 1978.PubMedCrossRefGoogle Scholar
  16. 16.
    Reinis, S. and Lamble, R.W. Physiol. Chem. Phys. 4: 335–338, 1972.PubMedGoogle Scholar
  17. 17.
    Reinis, S. Physiol. Chem. Phys. 4: 391–397, 1972.PubMedGoogle Scholar
  18. 18.
    Giuditta, A. In: Handbook of Neurochemistry, 2nd edition (Ed. A. Lajtha), Plenum Press, New York, Vol. 5, 1983, pp. 251–276.Google Scholar
  19. 19.
    Scaroni, R., Ambrosini, M.V. Principato, G.B., Federici, F., Ambrosi, G. and Giuditta, A. Physiol. Behav. 30: 577–582, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Ashapkin, V.V., Romanov, G.A., Tushmalova, N.A. and Vanyishin, B.F. Biokhimiia 48: 355–362, 1983.Google Scholar
  21. 21.
    Giuditta, A., Perrone Capano, C., D’Onofrio, G., Toniatti, C., Menna, T. and Hydén H., submitted.Google Scholar
  22. 22.
    Lewin, B. Genes, J. Wiley & Sons, New York, 1983.Google Scholar
  23. 23.
    Giuditta, A., Ambrosini, M.V., Scaroni, R., Chiurulla, C. and Sadile, A. Physiol. Behav. 34: 769–778, 1985.PubMedCrossRefGoogle Scholar
  24. 24.
    Crick, F. and Mitchison, G. Nature 304: 111–114, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Dewan, E.M. In: Sleep and Dreaming (Ed. E. Hartman), Little Brown, Boston, 1970, pp. 295–307.Google Scholar
  26. 26.
    Salganik, R.I., Parvez, H., Tomson, V.P. and Shumskaya, I.A. Neurosci. Lett. 36: 317–322, 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    Giuditta, A., Perrone Capano, C. and Ambrosini, M.V. In: Brain Plasticity, Learning and Memory (Eds. B.E. Will, P. Schmitt and J.C. Dalrymple-Alford), Plenum Press, New York, 1985.Google Scholar
  28. 28.
    Baltimore, D. Cell 40: 481–482, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing 1986

Authors and Affiliations

  • A. Giuditta
    • 1
  • M. V. Ambrosini
    • 2
  • F. Morelli
    • 1
  • C. Perrone Capano
    • 1
  • T. Menna
    • 1
  • C. Buono
    • 1
  • C. Lamberti
    • 1
  • A. Cerbone
    • 3
  • A. Sadile
    • 3
  1. 1.International Institute of Genetics and Biophysics and Department of General and Environmental PhysiologyNaplesItaly
  2. 2.Institute of General BiologyUniversity of PerugiaItaly
  3. 3.Institute of Human Physiology and Medical PhysicsNaplesItaly

Personalised recommendations