Advertisement

The Effect of Trisomy-21 (Down’s Syndrome) on Brain Transcription

  • L. Lim
  • C. Hall
  • T. Leung
  • S. Whatley
Part of the Topics in the Neurosciences book series (TNSC, volume 3)

Abstract

Messenger RNA from foetal, brains of normal and Down’s syndrome subjects was translated in vitro, Trisomy-21 resulted in a significant increase in the mRNA for a 68 kD microtubule-associated protein (68K MAP). This protein, whose gene thus putatively maps to chromosome 21, is a component of synaptic structures and membranes. An imbalance in its synthesis during brain development could contribute to the abnormal brains characteristic of Down’s syndrome. The 68K MAP is homologous to a constitutively synthesized 76 kD member of the heat-inducible family of proteins (heat-shock or stress proteins). However, in human ftbro- blasts, the amount of 68K MAP synthesized was not dependent on the content of chromosome 21, in contrast to that of another heat-inducible, but constitutive 74 kD protein. These results indicate that the effect of trisomy-21 on mRNA levels is tissue-specific and that chromosome 21 may be involved in stress responses in addition to cytoskeletal functions.

Keywords

Translation Product Synaptic Plasma Membrane Brain mRNA Phosphocellulose Chromatography Radioactive Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gusella, J.F., Wexler, N.S., Conneally, P.M., Naylor, S.L., Anderson, M.A., Tanzi, R.E., Watkins, P.C., Ottina, K., Wallace, M.R., Sakaguchi, A.Y., Young, A.B., Shoulson, I., Bonilla, E. and Martin, J.B. Nature 306: 234–238, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Crome, L. and Stern, J. Pathology of Mental Retardation, Churchill-Livingstone, London, 1962.Google Scholar
  3. 2a.
    Zellweger, H. and Simpson, J. Chromosomes of Man, William Heinemann Ltd., London, 1977.Google Scholar
  4. 3.
    Tan, Y.H., Tischfield, J. and Ruddle, F.H. J. Exp. Med., 137: 317–330, 1973.PubMedCrossRefGoogle Scholar
  5. 3a.
    Brown, T.W., Dutrowski, R. and Darlington, G.J. Biochem. Biophys. Res. Commun. 102: 675–681, 1981.PubMedCrossRefGoogle Scholar
  6. 3b.
    Sherman, L., Dafni, N., Lieman-Hurwitz, J. and Groner, J. Proc. Natl. Acad. Sci. USA 80: 5465–5469, 1983.PubMedCrossRefGoogle Scholar
  7. 4.
    Kaback, M.M. and Bernstein, L.H. Ann. N.Y. Acad. Sci. 171: 526–536, 1970.CrossRefGoogle Scholar
  8. 5.
    Van Keurin, M.L., Goldman, D. and Merril, C.R. Ann. N.Y. Acad. Sci. 396: 55–67, 1982.CrossRefGoogle Scholar
  9. 6.
    Davison, A.N. and Dobbing, J. Applied Neurochemistry, Blackwell Scientific Publications, 1968.Google Scholar
  10. 7.
    Kaplan, B.B. In: Molecular Approaches to Neurobiology (Ed. I.R. Brown), Academic Press, 1982, pp. 71–98.Google Scholar
  11. 8.
    Hall, C., Mahadevan, L., Whatley, S., Biswas, G. and Lim, L. Biochem. J. 219: 751–761, 1984.PubMedGoogle Scholar
  12. 9.
    Lim, L. and Canellakis, E.S. Nature 227: 710–712, 1970.PubMedCrossRefGoogle Scholar
  13. 10.
    Hall, C. and Lim, L. Biochem. J. 196: 327–336, 1981.PubMedGoogle Scholar
  14. 11.
    Lim, L., Hall, C., Leung, T., Mahadevan, L. and Whatley, S.A. J. Neurochem. 41: 1177–1181, 1983.PubMedCrossRefGoogle Scholar
  15. 12.
    Whatley, S.A., Hall, C., Davison, A.N. and Lim, L. Biochem. J. 220: 179–187, 1984.PubMedGoogle Scholar
  16. 13.
    Lim, L., Hall, C., Leung, T. and Whatley, S.A. Biochem. J. 224: 677–680, 1984.PubMedGoogle Scholar
  17. 14.
    Bensaude, O., Babinet, C., Morange, M. and Jacob, F. Nature 305: 331–333, 1983.PubMedCrossRefGoogle Scholar
  18. 15.
    Schlesinger, M.J., Ashburner, M. and Tissieres, A. In: Heat Shock from Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1982.Google Scholar
  19. 16.
    Torok, I. and Karch, F. Nucleic Acids Res. 8: 3105–3123, 1980.PubMedCrossRefGoogle Scholar
  20. 17.
    Pelham, H. Cell 30: 517–528, 1982.PubMedCrossRefGoogle Scholar
  21. 18.
    Wang, C., Asai, D.J. and Lazarides, E. Proc. Natl. Acad. Sci. USA 77: 1541–1545, 1980.PubMedCrossRefGoogle Scholar
  22. 18a.
    Granger, B.L. and Lazarides, E. Science, 221: 553–556, 1983.PubMedCrossRefGoogle Scholar
  23. 19.
    Wang, C., Gomer, R.H. and Lazarides, E. Proc. Natl. Acad. Sci. USA 78: 3531–3535, 1981.PubMedCrossRefGoogle Scholar
  24. 20.
    Ann. N.Y. Acad. Sci. 396: 1982.Google Scholar
  25. 21.
    Wu, B., Hunt, C. and Morimoto, R. Mol. Cell Biol. 5: 330–341, 1985.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing 1986

Authors and Affiliations

  • L. Lim
    • 1
  • C. Hall
    • 1
  • T. Leung
    • 1
  • S. Whatley
    • 1
  1. 1.Department of NeurochemistryInstitute of NeurologyLondonUK

Personalised recommendations