Skip to main content

Abstract

The communication by Elliott published in 1905 [1] dealing with the action of adrenaline in peripheral tissues has often been considered to represent the first evidence that neurons communicate with effector cells in the periphery and with other neurons via chemical messengers [see book edited by Stjarne et al. (2)]. With regard to the chemical compounds involved in chemical transmission, focus has since then been on a fairly small number of compounds, including catecholamines such as dopamine, noradrenaline and adrenaline, as well as 5-hydroxytryptamine (5-HT), acetylcholine, and more recently a group of amino acids, for example glutamate and y-aminobutyric acid (GABA). More recent evidence suggests that also certain peptides may be present in neurons and may, in fact, be involved in the transmission processes at synapses [see 3 and 4], With the inclusion of peptides, the number of putative transmitters in the nervous system has increased dramatically [see 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elliott, T.R. 1905. The action of adrenalin. J. Physiol., Lond. 32, 401–407.

    PubMed  Google Scholar 

  2. Stjarne, L., Hedqvist, P., Lagercrantz, H. and Wennmalm, A. (Eds.) 1981. Chemical Neurotransmission. Academic Press, London.

    Google Scholar 

  3. Otsuka, M. and Takahashi, T. 1977. Putative peptide neurotransmitters. Ann. Rev. Pharmac. Toxicol. 17, 425–439.

    CAS  Google Scholar 

  4. Snyder, S.H. 1980. Brain peptides as neurotransmitters. Science 209, 976–983.

    PubMed  CAS  Google Scholar 

  5. Kimura, S., Okada, M., Sugita, Y., Kanazawa, I. and Munekata, E. 1983. Novel neuropeptides, neurokinin a-and β-, isolated from porcine spinal cord. Proc. Jap. Acad. 59, 101.

    CAS  Google Scholar 

  6. Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S. 1983. Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor, Nature 306, 32–36.

    PubMed  CAS  Google Scholar 

  7. Amara, S.G., Jonas, v., Rosenfeld, M.G., Ong, E.S. and Evans, R.M. 1982. Alternative RNA-processing in calcitonin gene expression generates mRNAs encoding different polypeptide products, Nature 298, 240–244.

    PubMed  CAS  Google Scholar 

  8. Rosenfeld, M.G., Mermod, J.-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W. and Evans, R.M. 1983. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing, Nature 304, 129–135.

    PubMed  CAS  Google Scholar 

  9. Itoh, N., Obata, K., Yanaihara, N. and Okamoto, H. 1983. Human prepro-vasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27 Nature (Lond.) 304, 547–549.

    CAS  Google Scholar 

  10. Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M. 1980. Peptidergic neurons. Nature London 284, 515–521.

    PubMed  Google Scholar 

  11. Hökfelt, T., Lundberg, J.M., Schultzberg, S., Johansson, O., Ljungdahl, A. and Rehfeld, J. 1980. Coexistence of peptides and putative transmitters in neurons. In E. Costa and M. Trabucchi (Eds.). Neural Peptides and Neuronal Communication. Raven Press, New York, pp. 1–23.

    Google Scholar 

  12. Hökfelt, T., Lundberg, J.M., Skirboll, L., Johansson, O., Schultzberg, M. and Vincent, S.R. 1982. Coexistence of classical transmitters and peptides in neurons, In A.C. Cuello (Ed.). Co-transmission. MacMillan, London and Basingtoke, pp. 77–126.

    Google Scholar 

  13. Hökfelt, T., Johansson, O. and Goldstein, M. 1984. Chemical anatomy of the brain. Science 225, 1326–1334.

    PubMed  Google Scholar 

  14. Cuello, A.C. (Ed.) 1982. Co-transmission MacMillan, London and Basingstoke.

    Google Scholar 

  15. Chan-Palay, V. and Palay, S.L. (Eds.) 1984 Coexistence of Neuroactive Substances in Neurons. John Wiley & Sons, New York.

    Google Scholar 

  16. Coons, A.H. 1958. Fluorescent antibody methods. In J.F. Danielli (Ed.), General Cytochemical Methods, Academic Press, New York, pp. 399–422.

    Google Scholar 

  17. Nakane, P.N. and Pierce, G.B. 1967. Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens and antibodies. J. Cell. Biol. 33, 307–311.

    PubMed  CAS  Google Scholar 

  18. Avrameas, S. 1969. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry 6, 43–47.

    PubMed  CAS  Google Scholar 

  19. Sternberger, L.A., Hardy, Jr. P.H., Cuculis, J.J. and Meyer, H.G. 1970. The unlabeled antibody enzyme method of immunohistochemistry. Preparations and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 18, 315–324.

    PubMed  CAS  Google Scholar 

  20. Tramu, G., Pillez, A. and Leonardelli, J. 1978. An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J. Histochem. Cytochem. 26, 322–324.

    PubMed  CAS  Google Scholar 

  21. Chan-Palay, V., Jonsson, G. and Palay, S.L. 1978. Serotonin and substance P coexist in neurons of the rat’s central nervous system. Proc. natn. Acad. Sci. U.S.A. 75, 1582–1586.

    CAS  Google Scholar 

  22. Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B. and Goldstein, M. 1978. Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience 3, 517–538.

    PubMed  Google Scholar 

  23. Brodal, A., Taber, E. and Walberg, F. 1960. The raphe nuclei of the brain stem in the cat. II. Efferent connections. J. Comp. Neurol. 114, 239–259.

    Google Scholar 

  24. Dahlström, A. and Fuxe, K. 1965. Evidence for the existence of monoamine containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal levels of bulbospinal neuron system. Acta Physiol Scand. 64, Suppl. 247, 5–36.

    Google Scholar 

  25. Björklund, A., Emson, P.C, Gilbert, R.T.F. and Skagerberg, G. 1979. Further evidence for the possible coexistence of 5-hydroxytryptamine and substance P in medullary raphe neurons of rat brain Br. J. Pharmac. 66, 112–113.

    Google Scholar 

  26. Singer, E., Sperk, G., Placheta, P. and Leeman, S.E. 1979. Reduction of substance P levels in the cervical spinal cord of the rat after intracisternal 5,7-dihy- droxytryptamine injection. Brain Res. 174, 362–365.

    PubMed  CAS  Google Scholar 

  27. Gilbert, R.F.T., Emson, P.C, Hunt, S.P., Bennett, Marsden, C.A., Sandberg, B.E.B., Steinbusch, H. and Verhofstad, A.A.J. 1982. The effects of monoamine neurotoxins on peptides in the rat spinal cord, Neuroscience 7, 69–88.

    PubMed  CAS  Google Scholar 

  28. Gilbert, R.F.T., Bennett, G.W., Marsden, C.A. and Emson, P.C. 1981. The effects of 5-hydroxytryptamine-depleting drugs on peptides in the ventral spinal cord, Eur. J. Pharmacol. 76, 203–210.

    PubMed  CAS  Google Scholar 

  29. Pelletier, G., Steinbusch, H.W. and Verhofstad, A. 1981. Immunoreactive substance P and serotonin present in the same dense core vesicles. Nature London 293, 71–72.

    PubMed  CAS  Google Scholar 

  30. Johansson, O. and Hökfelt, T. 1980. Thyrotropin releasing hormone, somatostatin, and enkephalin: Distribution studies using immunohistochemical techniques, J. Histochem. Cytochem. 28, 364–366.

    PubMed  CAS  Google Scholar 

  31. Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S.L., White, N., Steinbusch, H.W.M., Verhofstad, A.A.J., Emson, P.C. and Spindel, E. 1981. Immunohistochemical support for three putative transmitters in one neuron: Coexistence of 5-hydroxytryptamine-, substance P-, and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience 6, 1857–1881.

    PubMed  CAS  Google Scholar 

  32. Hökfelt, T., Fuxe, K., Johansson, O. Jeffcoate, S. and White, N. 1975. Thyrotropin releasing hormone (TRH)-containing nerve terminals in certain brain stem nuclei and in the spinal cord. Neurosci. Lett. 9, 133–139.

    Google Scholar 

  33. Johansson, O., Hökfelt, T., Jeffcoate, S.L., White, N. and Sternberger, L.A. 1980. Ultrastructural localization of TRH-like immunoreactivity. Exp. Brain Res. 38, 1–10.

    PubMed  CAS  Google Scholar 

  34. Lechan, R.M., Snapper, S.B. and Jackson, I.M.D. 1983. Evidence that spinal cord thyrotropin-releasing hormone is independent of the paraventricular nucleus. Neurosci. Letts. 43, 61–65.

    CAS  Google Scholar 

  35. Hökfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, M., Luft, R., Efendić, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S.L., Rehfeld, J., Said, S., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L. and Palacios, R. 1978. Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In S. Reichlin, R.J. Baldessarini and J.B. Martin (Eds.), The Hypothalamus, Raven Press, New York, pp. 69–135.

    Google Scholar 

  36. Johansson, O. and Hökfelt, T. 1980. Immunohistochemical distribution of thyrotropin-releasing hormone, somatostatin and enkephalin with special reference to the hypothalamus. In W. Wuttke, A. Weindl and R.-R. Dries (Eds.), Brain and Pituitary Peptide, Karger, Basel, pp. 202–212.

    Google Scholar 

  37. Lechan, R.M. and Jackson, I.M.D. 1982. Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111, 55–65.

    PubMed  CAS  Google Scholar 

  38. Saper, C.B., Loewy, A.D., Swanson,L.W. and Cowan, W.M. 1976. Direct hypothalamo-autonomic connections, Brain Res. 117, 305–312.

    PubMed  CAS  Google Scholar 

  39. Swanson, L.W. 1977. Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res. 128, 356–363.

    Google Scholar 

  40. Bowker, R.M., Westlund, K.N., Sullivan, M.C., Wilber, J.F. and Coulter, J.D. 1983. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Research 288, 33–48.

    PubMed  CAS  Google Scholar 

  41. Barbeau, H. and Bédard, P. 1981. Similar motor effects of 5-HT and TRH in rats following chronical spinal transection and 5, 7-dihydroxytryptamine injection. Neuropharmacol. 20, 477–481.

    CAS  Google Scholar 

  42. Andén, N.-E., Jukes. M. and Lundberg, A. 1964. Spinal reflexes and monoamine liberation. Nature (London) 202, 1222–1223.

    Google Scholar 

  43. Sharif, N.S., Burt, D.R., Towle, A.C., Mueller, R.A. and Breese, G.R. 1983. Codepletion of serotonin and TRH induces apparent supersensitivity of spinal TRH receptors. Eur. J. Pharmacol. 95, 301–304.

    PubMed  CAS  Google Scholar 

  44. Mitchell, R. and Fleetwood-Walker, S. 1981. Substance P, but not TRH, modulates the 5-HT autoreceptor in ventral lumbar spinal cord. Europ. J. Pharmacol. 76, 119–120.

    CAS  Google Scholar 

  45. Yaksh, T.L. and Rudy, T.A. 1976. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17, 1031–1036.

    PubMed  CAS  Google Scholar 

  46. Hansen, S., Svensson, L., Hökfelt, T. and Everitt, B.J. 1983. 5-hydroxytryptamine-thyrotropin releasing hormone interactions in the spinal cord: Effects on parameters of sexual behaviour in the male rat. Neurosci. Letts. 42, 299–304.

    CAS  Google Scholar 

  47. Svensson, L. and Hansen, S. 1984. Spinal monoaminergic modulation of masculine copulatory behavior. Brain Res., in press.

    Google Scholar 

  48. Tatemoto, K., Rökaeus, A., Jörnvall, H., McDonald, T.J. and Mutt, V. 1983. Galanin–a novel biologically active peptide from porcine intestine. FEBS Letts 164, 124–128.

    CAS  Google Scholar 

  49. Rökaeus, A., Melander, T., Hökfelt, T., Lundberg, J.M., Tatemoto, K., Carlquist, M. and Mutt, V. 1984. A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci. Letts. 47, 161–166.

    Google Scholar 

  50. Melander, T., Hökfelt, T., Rökaus, A., Tatemoto, K. and Mutt, V. 1984. Galanin immunoreactive neurons in the central and peripheral nervous system. Abst. Soc. Neurosci., in press.

    Google Scholar 

  51. Melander, T., Hökfelt, T., Rökaeus, A., Fahrenkrug, J., Tatemoto, K. and Mutt, V. 1985. Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of rat, mouse, pig and guinea-pig. Cell Tissue Res. 239, 253–270.

    PubMed  CAS  Google Scholar 

  52. Melander, T., Hökfelt, T. and Rökaeus, A. 1984. Distribution of galanin-like immunoreactivity in the rat central nervous system. In preparation.

    Google Scholar 

  53. Melander, T., Staines, W., Hökfelt, T., Rökaeus, A., Wainer, B., Salvaterra, P.M. and Oertel, W. Occurrence of galanin-like immunoreactivity in central catecholamine, GABA and cholinergic neurons. In preparation.

    Google Scholar 

  54. Dahlström, A. and Fuxe, K. 1964. Evidence of the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, Suppl. 232, 1–55.

    Google Scholar 

  55. Vincent, S.R., Hökfelt, T. and Wu, J.Y. 1982. GABA neuron systems in hypothalamus and the pituitary gland: Immunohistochemical demonstration using antibodies against glutamate decarboxylase. Neuroendocrinology 34, 117–125.

    PubMed  CAS  Google Scholar 

  56. Vincent, S.R., Hökfelt, T., Skirboll, L.R. and Wu, J.Y. 1983. Hypothalamic γ-aminobutyric acid neurons project to the neocortex. Science 220, 1309–1310.

    PubMed  CAS  Google Scholar 

  57. Watanabe, T., Taguchi, Y., Shiosaka, S., Tanaka, J., Kubota, H., Terano, Y., Tohyama, M. and Wada, H. 1984. Distribution of the histaminergic neuron system in the central nervous system of rats. A fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 295, 13–25.

    PubMed  CAS  Google Scholar 

  58. Panula, P., Yang, H.-Y.T. and Costa, E. 1984. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA. 83, 2572–2576.

    PubMed  CAS  Google Scholar 

  59. Everitt, B.J., Hökfelt, T., Terenius, L., Tatemoto, K., Mutt, V. and Goldstein, M. 1984. Differential co-existence of neuropeptide Y ( NPY)-like immunore-activity with catecholamines in the central nervous system of the rat. Neuroscience. 11, 443–462.

    PubMed  CAS  Google Scholar 

  60. Hökfelt, T., Fuxe, K., Goldstein, M. and Johansson, O. 1974. Immunohistochemical evidence for the existence of adrenaline neurones in the rat brain. Brain Res. 66, 235–251.

    Google Scholar 

  61. Hökfelt, T., Johansson, O. and Goldstein, M. 1984. Central catecholamine neurons with special reference to adrenaline neurons. In A. Björklund and T. Hökfelt, (Eds.) Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitters in the CNS, Part 1. Elsevier, Amsterdam, pp. 156–276.

    Google Scholar 

  62. Mason, R.T., Peterfreund, R.A., Sawchenko, P.E., Corrigan, A.Z., Rivier, J.E. and Vale, W.W. 1984. Release of the predicted calcitonin gene-related peptide from cultured rat trigeminal ganglion cells, Nature 308, 653–655.

    PubMed  CAS  Google Scholar 

  63. Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G. and Arimura, A. 1976. Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat. Neurosci. 1, 131–136.

    Google Scholar 

  64. Wiesenfeld-Hallln, Z., Hökfelt, T., Lundberg, J.M., Forssmann, W.G., Reinecke, M., Tschopp, F.A. and Fischer, J. A. 1984. Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons and interact in spinal behavioural responses. Neurosci. Letts., 52, 199–204.

    CAS  Google Scholar 

  65. Fisher, L.A., Kikkawa, D.O., Rivier, J.E., Amara, S.G., Evans, R.M., Rosenfeld, M.G., Vale, W.W. and Brown M.R. 1983. Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide, Nature 305, 534–536.

    PubMed  CAS  Google Scholar 

  66. Hylden, J.L.K. and Wilcox, G.L. 1981. Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice, Brain Res. 217, 212–215.

    PubMed  CAS  Google Scholar 

  67. Piercey, M.F., Dobry, P.J.K., Schroeder, L.A. and Einspahr, F.J. 1981. Behavioral evidence that substance P may be a spinal cord sensory neurotransmitter, Brain Res. 210, 407–412.

    PubMed  CAS  Google Scholar 

  68. Seybold, V.S., Hylden, J.L.K. and Wilcox, G.L. 1982. Intrathecal substance P and somatostatin in rats: behaviors indicative of sensation, Peptides 3, 49–54.

    PubMed  CAS  Google Scholar 

  69. Vale, W., Speiss, J., Rivier, C. and Rivier, J. 1981. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397.

    PubMed  CAS  Google Scholar 

  70. Neill, J.D. 1980. Neuroendocrine regulation of prolactin secretion. In L. Martini and W.F. Ganong (Eds.) Frontiers in Neuroendocrinology. Vol. 6. Raven Press, New York, pp. 129–155.

    Google Scholar 

  71. Said, S.I. and Mutt, V. 1970. Polypeptide with broad biological activity. Isolation from small intestine. Science N.Y. 169, 1217–1218.

    PubMed  CAS  Google Scholar 

  72. Mutt, V. and Said, S.I. 1974. Structure of the porcine vasoactive intestinal octacosapeptide. The amino-acid sequence. Use of kallikrein in its determination. Eur. J. Biochem. 42, 581–589.

    PubMed  CAS  Google Scholar 

  73. Kato, Y., Iwasaki, Y., Iwasaki, J., Abe, H., Yanaihara, N. and Imura, H. 1978. Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 103, 554–558.

    PubMed  CAS  Google Scholar 

  74. Ruberg, M., Rotsztejn, W., Arancibia, S., Besson, J. and Enalbert, A. 1978. Stimulation of prolactin release by vasoactive intestinal peptide. Europ. J. Pharmacol. 51, 319–320.

    CAS  Google Scholar 

  75. Shaar, C.J., Clemens, J.A. and Dininger, N.B. 1979. Effect of vasoactive intestinal polypeptide on prolactin release in vitro. Life Sci. 25, 2071–2074.

    PubMed  CAS  Google Scholar 

  76. Vijayan, E., Samson, W., Said, S.I. and McCann, S.M. 1979. Vasoactive intestinal polypeptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone and prolactin in conscious ovariectomized rats. Endocrinology 104, 53–57.

    PubMed  CAS  Google Scholar 

  77. Fuxe, K., Hökfelt, T., Said, S.I. and Mutt, V. 1977. Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci. Lett. 5, 241–246.

    PubMed  CAS  Google Scholar 

  78. Loren, I., Emson, P.C., Fahrenkrug, J., Bjorklund, A., Alumets, J., Håkanson, R. and Sundler, F. 1979. Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4, 1953–1976.

    PubMed  Google Scholar 

  79. Sims, K.B., Hoffman, D.L., Said, S.I. and Zimmerman, E.A. 1980. Vasoactive intestinal polypeptide (VIP) in the mouse and rat brain: an immunocytochemical study. Brain Res. 186, 165–183.

    PubMed  CAS  Google Scholar 

  80. Hökfelt, T., Schultzberg, M., Lundberg, J.M., Fuxe, K., Mutt, V., Fahrenkrug, J. and Said, S.I. 1982. Distribution of vasoactive intestinal polypeptide in the central and peripheral nervous systems as revealed by immunocytochemistry. In S.I. Said (Ed.) Vasoactive Intestinal Peptide. Raven Press, New York, 65–90.

    Google Scholar 

  81. Tatemoto, K. and Mutt, V. 1981. Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the family. Proc. Natl. Acad. Sci. USA 78, 6603–6607.

    PubMed  CAS  Google Scholar 

  82. Hökfelt, T. Fahrenkrug, J., Tatemoto, K., Mutt, V. and Werner, S. 1982. PHI, a VIP-like peptide, is present in the rat median eminence. Acta Physiol. Scand. 116, 469–471.

    Google Scholar 

  83. Hökfelt, T., Fahrenkrug, J., Tatemoto, K., Mutt, V. Werner, S., Hulting, A.-L., Terenius, L. and Chang, K.J. 1983. The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: Possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc. Natl. Acad. Sci. USA 80, 895–898.

    PubMed  Google Scholar 

  84. Samson, W.K., Lumpkin, M.D., McDonald, J.K. and McCann, S.M. 1983. Prolactin-releasing activity of porcine intestinal peptide (PHI-27). Peptides 4, 817–819.

    PubMed  CAS  Google Scholar 

  85. Werner, S., Hulting, A.-L., Hökfelt, T., Eneroth, P., Tatemoto, K., Mutt. V., Maroder, L. and Wunsch, E. 1983. Effect of the peptide PHI-27 on prolactin release in vitro. Neuroendocrinology 37, 476–478.

    PubMed  CAS  Google Scholar 

  86. Kaji, H., Chihara, K., Abe, H., Minamitani, N., Kodama, H., Kita, T., Fujita, T. and Tatemoto, K. 1984. Stimulatory effect of peptide histidine isoleucine amide 1–27 on prolactin release in the rat. Life Sci., in press.

    Google Scholar 

  87. Christofides, N.D., Yangori, Y., Blank, M.A., Tatemoto, K., Polak, J.M. and Bloom, S.R. 1982. Are peptide histidine isoleucine and vasoactive intestinal peptide co-synthesized in the same prohormone? Lancet ii, 1398.

    Google Scholar 

  88. Lundberg, J.M., Fahrenkrug, J., Hökfelt, T., Martling, C.-R., Larsson, O., Tatemoto, K. and Anggård, A. 1984. Co-existence of peptide HI ( PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 5, 593–605.

    PubMed  CAS  Google Scholar 

  89. Said, S.I. and Porter, J.C. 1979. Vasoactive intestinal polypeptide: release into hypophyseal portal blood. Life Sci. 24, 227–230.

    PubMed  CAS  Google Scholar 

  90. Shimatsu, A., Kato, Y., Matsushita, N., Katakami, H., Yanaihara, N. and Imura, H. 1981. Immunoreactive vasoactive intestinal polypeptide in rat hypophysial portal blood. Endocrinology 108, 395–398.

    PubMed  CAS  Google Scholar 

  91. Shimatsu, A., Kato, Y., Inoue, T., Christofides, N.D., Bloom, S.R. and Imura, H. 1983. Peptide histidine isoleucine- and vasoactive intestinal polypeptide-like immunoreactivity coexist in rat hypophysial portal blood. Neurosci. Lett. 43, 259–262.

    PubMed  CAS  Google Scholar 

  92. Hökfelt, T., Elde, R., Johansson, O., Terenius, L. and Stein, L. 1977. The distribution of enkephalin immunoreactive cell bodies in the rat central nervous system. Neurosci. Letts. 5, 25–32.

    Google Scholar 

  93. Sar, M., Stumpf, W.E., Miller, R.J., Chang, K.-J and Cuatrecasas, P. 1978. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J. Comp. Neurol, 182 17–38.

    PubMed  CAS  Google Scholar 

  94. Wamsley, J.K., Young, W.S. III. and Kuhar, M.J. 1980. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190, 153–174.

    PubMed  CAS  Google Scholar 

  95. Fellmann, D., Bugnon, C, Gouget, A. and Cardot, J. 1982. Les neurones á corticolibérine (CRF) du cerveau de rat. Compt. Rend. Séan. Soc. Biol. 176, 511–516.

    Google Scholar 

  96. Bloom, F.E., Battenberg, E.L.F., Rivier, J. and Vale, W. 1982. Corticotropin releasing factor (CRF): immunoreactive neurons and fibers in rat hypothalamus. Regul. Peptides 4, 43–48.

    CAS  Google Scholar 

  97. Olschowka, J.A., O’Donohue, T.L., Mueller, G.P. and Jacobowitz, D.M. 1982. The distribution of corticotrophin releasing factor-like immunoreactive neurons in rat brain. Peptides 3, 995–1015.

    PubMed  CAS  Google Scholar 

  98. Antoni, F.A., Palkovits, M., Makara, G.B., Linton, E.A., Lowry, P.J. and Kiss, J.Z. 1983. Immunoreactive corticotropin-releasing hormone in the hypothalamoin-fundibular tract. Neuroendocrinology 36, 415–423.

    PubMed  CAS  Google Scholar 

  99. Cummings, S., Elde, R., Ells, J. and Lindall, A. 1983. Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: An immunohistochemical study. J. Neurosci. 3, 1355–1368.

    PubMed  CAS  Google Scholar 

  100. Kawata, M., Hashimoto, K., Takahara, J. and Sand, Y. 1983. Immunohistochemical identification of neurons containing corticotropin-releasing factor in the rat hypothalamus. Cell Tissue Res. 230, 239–246.

    PubMed  CAS  Google Scholar 

  101. Paull, W.K. and Gibbs, F.P. 1983. The corticotropin releasing factor ( CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. Histochemistry 78, 303–316.

    PubMed  CAS  Google Scholar 

  102. Swanson, L.W., Sawchenko, P.E., Rivier, J. and Vale, W.W. 1983. Organization of ovine corticotropin- releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology 36, 165–186.

    PubMed  CAS  Google Scholar 

  103. Ganong, W.F. 1963. The central nervous system and the synthesis and release of adrenocorticotropic hormone. In A.V. Nalbandov (Ed.) Advances in Neuroendocrinology. Univ. of Illinois Press, Urbana, pp. 92–149.

    Google Scholar 

  104. Meites, J., Nicoll, C.S. and Talwalker, P.K. 1963. The central nervous system and the secretion and release of prolactin.In A.V. Nalbandov (Ed.). Advances in Neuroendocrinology. Univ. of Illinois Press, Urbana, pp. 238–277.

    Google Scholar 

  105. Brown, G.M. and Martin, J.B. 1974. Corticosterone, prolactin, and growth hormone responses to handling and new environment in the rat. Psychosom. Med. 36, 241–247.

    PubMed  CAS  Google Scholar 

  106. Harms, P.G., Langlier, P. and McCann, S.M. 1975. Modification of stress-induced prolactin release by dexamethasone or adrenalectomy. Endocrinology 96, 475–478.

    PubMed  CAS  Google Scholar 

  107. Bruni, J.A., Van Vugt, D., Marshall, S. and Meites, J. 1977. Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle stimulation hormone, thyroid stimulating hormone and growth hormone. Life Sci. 21, 461–466.

    PubMed  CAS  Google Scholar 

  108. Cocchi, D., Santagostino, A., Gil-Ad, I., Ferri, S. and Müller, E. 1977. Leu-enkephalin-stimulated growth hormone and prolactin release in the rat: comparison with the effect of morphine. Life. Sci. 20, 2041–2046.

    PubMed  CAS  Google Scholar 

  109. Cusan, L., Dupont, A., Kledzik, G.S., Labrie, F., Coy, D.H. and Schally, A.V. 1977. Potent prolactin and growth hormone releasing activity of more analogues of met-enkephalin. Nature (Lond.) 268, 544–547.

    CAS  Google Scholar 

  110. Ferland, L., Fuxe, K., Eneroth, P., Gustafsson, J.-A. and Skett, P. 1977. Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. Eur. J. Pharmacol. 43, 89–90.

    PubMed  CAS  Google Scholar 

  111. Shaar, C.J., Fredrickson, R.C.A., Dininger, N.B. and Jackson, L. 1977. Enkephalin analogues and naloxone modulate the release of growth hormone and prolactin -evidence for regulation by an endogenous opioid peptide in brain. Life Sci. 21, 853–860.

    PubMed  CAS  Google Scholar 

  112. Meites, J., Bruni, J.F., Van Vugt, D.A. and Smith, A.F. 1979. Relation of endogenous opioid peptides and morphine to neuroendocrine functions. Life Sci. 24, 1325–1336.

    PubMed  CAS  Google Scholar 

  113. MacLeod, R.M. and Lehmeyer, J.E. 1974. Studies on the mechanism of the dopamine-mediated inhibition of prolactin secretion. Endocrinology 94, 1077–1085.

    Google Scholar 

  114. Samuelsson, B. 1983. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568–575.

    PubMed  CAS  Google Scholar 

  115. Murphy, R.C., Hammarstrom, S. and Samuelsson, B. 1979. Leukotriene C: A slow-reacting substance from murine mastocytoma cells. Proc. Natl. Acad. Sci. USA 76, 4275–4279.

    PubMed  CAS  Google Scholar 

  116. Morris, H.R., Taylor, G.W., Piper, P.J. and Tippins, J.R. 1980. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature (Lond.) 285, 104–106.

    CAS  Google Scholar 

  117. Örning, L. and Hammarström, S. 1980. Inhibition of leukotriene C4 and leukotriene D4 synthesis. J. Biol. Chem. 255, 8023–8026.

    PubMed  Google Scholar 

  118. Bernström, K. and Hammarström, S. 1981. Metabolism of leukotriene D by porcine kidney. J. Biol. Chem. 256, 9579–9582.

    PubMed  Google Scholar 

  119. Bernström, K. and Hammarström, S. 1981. Metabolism of leukotriene D by porcine kidney. J. Biol. Chem. 256, 9579–9582.

    Google Scholar 

  120. Aehringhaus, U., Wölbling, R.H., König, W., Patrono, C, Peskar, B.M. and Peskar, B.A. 1982. Release of leukotriene C4 from human polymorphonuclear leucocytes as determined by radioimmunoassay. FEBS Lett. 146, 111–114.

    PubMed  CAS  Google Scholar 

  121. Barry, J. 1979. Immunohistochemistry of luteinizing hormone-relasing hormone producing neurons of the vertebrates. Int. Rev. Cytol. 60, 179–221.

    PubMed  CAS  Google Scholar 

  122. Hulting, A.-L., Lindgren, J.A., Hökfelt, T, Eneroth, P., Werner, S., Patrono, C. and Samuelsson, B. 1985. Leukotriene C4 as a mediator of LH release from rat anterior pituitary cells. Proc. Natl. Acad. Sci. USA, 81, 6212–6216.

    Google Scholar 

  123. Hulting, A.-L., Lindgren, J.A., Hökfelt, T. Heidvall, K., Eneroth, P., Werner, S., Patrono, C. and Samuelsson, B. 1984. Leukotriene C4 stimulates LH secretion from rat pituitary cells in vitro. Europ. J. Pharmacol., 106, 459–460.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Matinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

HÖkfelt, T. et al. (1986). Neuropeptides and their Possible Role as Auxiliary Messengers. In: Frederickson, R.C.A., Hendrie, H.C., Hingtgen, J.N., Aprison, M.H. (eds) Neuroregulation of Autonomic, Endocrine and Immune Systems. Topics in the Neurosciences, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2315-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2315-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9424-5

  • Online ISBN: 978-1-4613-2315-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics