Brain Monoaminergic Neurons: Distribution and Function in Relation to Regulation of Autonomic, Neuroendocrine and Immune Systems

  • Ray W. Fuller
Part of the Topics in the Neurosciences book series (TNSC, volume 2)


Four monoamines—dopamine, norepinephrine, epinephrine and serotonin—are present in neurons in several brain regions known or believed to be involved in the regulation of autonomic, endocrine and immune function. Various lines of evidence implicate these monoamines in such regulation. Some current antihypertensive drugs act through central noradrenergic pathways, and the possibility exists for therapeutic intervention in other cardiovascular, endocrine or immune diseases by pharmacologic modification of central monoaminergic function.


Luteinizing Hormone Nucleus Tractus Solitarius Luteinizing Hormone Secretion Central Nervous System Regulation Serotonin Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McEwen, B. S., Biegon, A., Davis, P. G., Krey, L. C, Luine, V. N., McGinnis, M. Y., Paden, C. M., Parsons, B. and Rainbow, T. C. 1982. Steroid hormones: humoral signals which alter brain cell properties and functions. Rec. Progr. Horm. Res. 38, 41–92.PubMedGoogle Scholar
  2. 2.
    Vlachakis, N. D., De Guia, D., Mendlowitz, M., Antram, S. and Wolf, R. L. 1974. Hypertension and anxiety. A trial with epinephrine and norepinephrine infusion. Mt. Sinai J. Med. 41, 615–625.PubMedGoogle Scholar
  3. 3.
    Besedovsky, H. O., Del Rey, A., and Sorkin, E. 1982. Neuroendocrine immunoregulatory circuits. In ADVANCES IN IMMUNOPHARMACOLOGY 2 ( J. W. Hadden, L. Chedid, P. Dukor, F. Spraefico and D. Willoughby, eds.), Pergamon Press, New York, pp. 443–450.Google Scholar
  4. 4.
    Vogt, M. 1954. The concentration of sympathin in different parts of the central nervous system in normal conditions and after the administration of drugs. J. Physiol. (London) 123, 451–481.Google Scholar
  5. 5.
    Hökfelt, T., Fuxe, K., Goldstein, M. and Johansson, O. 1974. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 235–251.CrossRefGoogle Scholar
  6. 6.
    Hökfelt, T., Johansson, O., Goldstein, M. 1984. Chemical anatomy of the brain. Science 225, 1326–1334.PubMedCrossRefGoogle Scholar
  7. 7.
    Steinbusch, H. W. M. 1981. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6, 557–618.PubMedCrossRefGoogle Scholar
  8. 8.
    Moore, R. Y. and Bloom, F. E. 1979. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2, 113–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Moore, R. Y. 1982. Catecholamine neuron systems in brain. Ann. Neurol. 12, 321–327.PubMedCrossRefGoogle Scholar
  10. 10.
    Consolazione, A. and Cuello, A. C. 1982. CNS serotonin pathways. In BIOLOGY OF SEROTONERGIC TRANSMISSION ( N. N. Osborne, ed.), John Wiley & Sons Ltd., Chichester, pp. 29–61.Google Scholar
  11. 11.
    Earnhardt, J. T., Elghozi, J. L., Le Quan-Bui, K. H. and Meyer, P. 1982. Implications for dopamine in central blood pressure regulation. Eur. Heart J. 3, Suppl. C, 27–31.PubMedGoogle Scholar
  12. 12.
    Granata, A. R. and Woodruff, G. N. 1982. Dopaminergic mechanisms in the nucleus tractus solitarius and effects on blood pressure. Brain Res. Bull. 8, 483–488.PubMedCrossRefGoogle Scholar
  13. 13.
    Fuxe, K., Bolme, P., Agnati, L. F., Jonsson, G., Andersson, K., Kohler, C. and Hökfelt, T. 1980. On the role of central adrenaline neurons in central cardiovascular regulation. In CENTRAL ADRENALINE NEURONS: BASIC ASPECTS AND THEIR ROLE IN CARDIOVASCULAR FUNCTIONS ( K. Fuxe, M. Goldstein, B. Hökfelt and T. Hökfelt, eds.), Pergamon Press, New York, pp. 161–182.Google Scholar
  14. 14.
    Hökfelt, T., Goldstein, M., Foster, G., Johansson, O., Schultzberg, M., Staines, W., Fuxe, K. and Kalia, M. 1984. Distribution of adrenaline neurons in the rat brain. Clin. Neuropharmacol. 7, Suppl. 1, 678–679.Google Scholar
  15. 15.
    Masek, K., Kadlecov, O. and Petrovicky, A. P. 1982. The effect of brain stem lesions on the immune response. In ADVANCES IN IMMUNOPHARMACOLOGY 2 ( J. W. Hadden, L. Chedid, P. Dukor, F. Spraefico and D. Willoughby, eds.), Pergamon Press, New York, pp. 443–450.Google Scholar
  16. 16.
    Frankfurt, M. and Azmitia, E. 1983. The effect of intracerebral injections of 5, 7-dihydroxytryptamine and 6-hydroxydopamine on the serotonin-immunoreactive cell bodies and fibers in the adult rat hypothalamus. Brain Res. 261, 91–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Mezey, E., Leranth, C, Brownstein, M. J., Friedman, E., Krieger, D. T. and Palkovits, M. 1984. On the origin of the serotonergic input to the intermediate lobe of the rat pituitary. Brain Res. 294, 231–237.PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards, D. J. and Rizk, M, 1981. Conversion of 3, 4-dihydroxyphenylalanine and deuterated 3, 4-dihydroxyphenylalanine to alcoholic metabolites of catecholamines in rat brain. J. Neurochem. 36, 1641–1647.PubMedCrossRefGoogle Scholar
  19. 19.
    Fuller, R. W., Hemrick-Luecke, S. K. and Perry, K. W. 1982. Effects of L-dopa on epinephrine concentration in rat brain: possible role of inhibition of norepinephrine N-methyltransferase by S-adenosylhomocysteine. J. Pharmacol. Exp. Ther. 223, 84–89.PubMedGoogle Scholar
  20. 20.
    Sved, A. and Fernstrom, J. 1981. Tyrosine availability and dopamine synthesis in the striatum: studies with gamma-butyrolactone. Life Sci. 29, 743–748.PubMedCrossRefGoogle Scholar
  21. 21.
    Gibson, C. J. and Wurtman, R. J. 1978. Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci. 22, 1399–1406.PubMedCrossRefGoogle Scholar
  22. 22.
    Fernstrom, J. D. 1983. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 63, 484–546.PubMedGoogle Scholar
  23. 23.
    Fuller, R. W. 1981. Serotonergic stimulation of pituitary-adrenocortical function in rats. Neuroendocrinology 32, 118–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Praag, H. M. 1982. Serotonin precursors in the treatment of depression. In SEROTONIN IN BIOLOGICAL PSYCHIATRY ( B. T. Ho, J. C. Schoolar and E. Usdin, eds.), Raven Press, New York, pp. 259–286.Google Scholar
  25. 25.
    Snyder, S. H. 1984. Drug and neurotransmitter receptors in the brain. Science 224, 22–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Kebabian, J. W., Beaulieu, M. and Itoh, Y. 1984. Pharmacological and biochemical evidence for the existence of two categories of dopamine receptor. Canad. J. Neurol. Sci. 11, 114–117.PubMedGoogle Scholar
  27. 27.
    Aghajanian, G. K. and Rogawski, M. A. 1983. The physiological role of a-adrenoceptors in the CNS: new concepts from single-cell studies. Trends Pharmacol. Sci. 4, 315–317.CrossRefGoogle Scholar
  28. 28.
    Nahorski, S. R. 1981. Identification and significance of beta-adrenoceptor subtypes. Trends Pharmacol. Sci. 2, 95–98.CrossRefGoogle Scholar
  29. 29.
    Peroutka, S. J. and Snyder, S. H. 1981. Two distinct serotonin receptors: regional variations in receptor binding in mammalian brain. Brain Res. 208, 339–347.PubMedCrossRefGoogle Scholar
  30. 30.
    Middlemiss, D. N. and Fozard, J. R. 1983. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between sub-types of the 5-HTI recognition site. Eur. J. Pharmacol. 90, 151–153.PubMedCrossRefGoogle Scholar
  31. 31.
    Gudelsky, G. A. 1981. Tuberoinfundibular dopamine neurons and the regulation of prolactin secretion. Psychoneuroendocrinology 6, 3–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Fuller, R. W., Snoddy, H. D., Mason, N. R., Clemens, J. A. and Bemis, K. G. 1983. Elevation of serum corticosterone in rats by dopamine agonists related in structure to pergolide. Neuroendocrinology 36, 285–290.PubMedCrossRefGoogle Scholar
  33. 33.
    McCann, S. M., Ojeda, S. R., Martinovic, J. and Vi jay an, E. 1977. Role of catecholamines, particularly dopamine, in the control of gonadotropin secretion. Adv. Biochem. Psychopharmacol. 16, 109–114.PubMedGoogle Scholar
  34. 34.
    Muller, E. E., Liuzzi, A., Cocchi, D., Panerai, A. E., Oppizzi, G., Locatelli, V., Mantegazza, P., Silvestrini, F. and Chiodini, P. G. 1977. Role of dopaminergic receptors in the regulation of growth hormone secretion. Adv. Biochem. Pharmacol. 16, 127–138.Google Scholar
  35. 35.
    Jadhav, A. L., Willett, R. N., Sapru, H. N. and Lokhandwala, M. F. 1983. Involvement of central dopamine receptors in the hypotensive action of pergolide. Naunyn-Schmiedeberg’s Arch. Pharmacol. 324, 281–286.CrossRefGoogle Scholar
  36. 36.
    Elliott, J. M. 1979. The central noradrenergic control of blood pressure and heart rate. Clin. Exp. Pharmacol. Physiol. 6, 569–579.PubMedCrossRefGoogle Scholar
  37. 37.
    Scriabine, A., Taylor, D. G., Jr. and Hong, E. 1982. Central control of arterial pressure by drugs. Prog. Drug Res. 26, 353–371.PubMedGoogle Scholar
  38. 38.
    Weiner, R. I. and Ganong, W. F. 1978. Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol. Rev. 58, 905–976.PubMedGoogle Scholar
  39. 39.
    Franz, D. N., Madsen, P. W., Peterson, R. G. and Sangdee, C. 1982. Functional roles of monoaminergic pathways to sympathetic preganglionic neurons. Clin. Exp. Hypertension A4, 543–562.CrossRefGoogle Scholar
  40. 40.
    Saavedra, J. M. and Alexander, N. 1983. Catecholamines and phenylethanolamine N-methyltransferase in selected brain nuclei and in the pineal gland of neurogenically hypertensive rats. Brain Res. 274, 388–392.PubMedCrossRefGoogle Scholar
  41. 41.
    Fuxe, K., Vincent, M., Andersson, K., Harfstrand, A., Agnati, L. F., Sassard, J., Benfenati, F. and Hökfelt, T. 1982. Selective reduction of adrenaline turnover in the dorsal midline area of the caudal medulla oblongata and increase of hypothalamic adrenaline levels in the Lyon strain of genetically hypertensive rats. Eur. J. Pharmacol. 77, 187–191.PubMedCrossRefGoogle Scholar
  42. 42.
    Granata, A. R., Ruggiero, D. A., Park, D. H., Joh, T. H. and Reis, D. J. 1983. Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5, 80–84.Google Scholar
  43. 43.
    Goldstein, M., Kingxiasa, K., Hieble, J. P., and Pendleton, R. G. 1982. Lowering of blood pressure in hypertensive rats by SKF 64139 and SKF 72223. Life Sci. 30, 1951–1957.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang, N. Y., Tessel, R. E., Grunewald, G. L. and Borchardt, R. T. 1982, Inhibitors of phenylethanolamine N-methyltransferase. 1. Effects of 2-cyclooctyl-2-hydroxy-ethylamine on rat brain and adrenal catecholamine content and blood pressure. J. Pharmacol. Exp. Ther. 223, 375–381.PubMedGoogle Scholar
  45. 45.
    Liang, N. Y., Tessel, R. E., Grunewald, G. L. and Borchardt, R. T. 1982. Inhibitors of phenylethanolamine-N-methyltransferase. 2. Comparison of nonaromatic analogs of phenylethanolamines, 7,8-dichloro-l,2,3,4-tetrahydro-isoquinoline (SKF-64139) and 2,3-dichloroo-methylbenzyla-mine: effects on rat brain and adrenal catecholamine content and blood pressure. J. Pharmacol. Exp. Ther. 223, 382–387.PubMedGoogle Scholar
  46. 46.
    Hahn, R. A., Fuller, R. W. and Hemrick-Luecke, S. K. 1983. Cardiovascular effects of LY134046, an inhibitor of norepinephrine N-methyltransferase, in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 226, 39–45.PubMedGoogle Scholar
  47. 47.
    Roth, K. A., Katz, R. J., Sibel, M., Mefford, 1. N., Barchas, J. D. and Carroll, B. J. 1981. Central epinergic inhibition of corticosterone release in rat. Life Sci. 28, 2389–2394.PubMedCrossRefGoogle Scholar
  48. 48.
    Mezey, E., Kiss, J. Z., Skirboll, L. R., Goldstein, M, and Axelrod, J. 1984. Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline. Nature 310, 140–141.PubMedCrossRefGoogle Scholar
  49. 49.
    Crowley, W. R., Terry, L. C. and Johnson, M. D. 1982. Evidence for the involvement of central epinephrine systems in the regulation of luteinizing hormone, prolactin, and growth hormone release in female rats. Endocrinology 110, 1102–1107.PubMedCrossRefGoogle Scholar
  50. 50.
    Terry, L. C, Crowley, W. R., Lynch, C, Longserre and Johnson, M. D. 1982. Role of central epinephrine in regulation of anterior pituitary hormone secretion. Peptides 3, 311–318.PubMedCrossRefGoogle Scholar
  51. 51.
    Coen, C. W. and Coombs, M. C. 1983. Effects. of manipulating catecholamines on the incidence of the preovulatory surge of luteinizing hormone and ovulation in the rat: evidence for a necessary involvement of hypothalamic adrenaline in the normal or ‘midnight’ surge. Neuroscience 10, 187–206.PubMedCrossRefGoogle Scholar
  52. 52.
    Coombs, M. C. and Coen, C. W. 1983. Adrenaline turnover rates in the medial preoptic area and mediobasal hypothalamus in relation to the release of luteinizing hormone in female rats. Neuroscience 10, 207–210.PubMedCrossRefGoogle Scholar
  53. 53.
    MacKinnon, P. C. B., Clement, E. M., Clark, C. and Sheaves, R. 1983. Hypothalamic adrenergic activity precedes the preovulatory luteinizing hormone surge in the rat. Neurosci. Lett. 43, 221–226.PubMedCrossRefGoogle Scholar
  54. 54.
    Kuhn, D. M., Wolf, W. A. and Lovenberg, W. 1980. Review of the role of the central serotonergic neuronal system in blood pressure regulation. Hypertension 2, 243–255.PubMedGoogle Scholar
  55. 55.
    Laguzzi, R., Reis, D. J. and Talman, W. T. 1984. Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res. 304, 321–328.PubMedCrossRefGoogle Scholar
  56. 56.
    Minson, J. B., Choy, V. J. and Chalmers, J. P. 1984. Bulbospinal serotonin neurons and hypotensive effects of methyldopa in the spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 6, 312–317.PubMedCrossRefGoogle Scholar
  57. 57.
    Gibbs, D. M. and Vale, W. 1983. Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Res. 280, 176–179.PubMedCrossRefGoogle Scholar
  58. 58.
    Fuller, R. W., Snoddy, H. D. and Mason, N. R. 1983. Antagonism of the quipazine-induced elevation of serum corticosterone in rats by ketanserin, pirenperone and other antagonists of 5HT2 receptors. Fed. Proc. 42, 459.Google Scholar
  59. 59.
    Willoughby, J. O., Menadue, M. and Jervois, P. 1982. Function of serotonin in physiologic secretion of growth hormone and prolactin: action of 5, 7-dihydroxytryptamine, fenfluramine and p-chlorophenylalanine. Brain Res. 249, 291–299.PubMedCrossRefGoogle Scholar
  60. 60.
    Becu de Villalobos, D., Lux, V. A. R., Lacau de Mengido, I. and Libertun, C. 1984. Sexual differences in the serotonergic control of prolactin and luteinizing hormone secretion in the rat. Endocrinology 115, 84–89.PubMedCrossRefGoogle Scholar
  61. 61.
    Van de Kar, L. D. and Bethea, C. L. 1982. Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphenucleus. Neuroendocrinology 35, 225–230.PubMedCrossRefGoogle Scholar
  62. 62.
    Smythe, G. A., Bradshaw, J. E., Cai, W. Y. and Symons, R. G. 1982. Hypothalamic serotoninergic stimulation of thyrotropin secretion and related brain-hormone and drug interactions in the rat. Endocrinology 111, 1181–1191.PubMedCrossRefGoogle Scholar

Copyright information

© Matinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • Ray W. Fuller
    • 1
  1. 1.Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisUSA

Personalised recommendations