Skip to main content

Molecular Properties of Isolated Ca2+ Transport Systems from Nerve Terminals

  • Chapter
Book cover Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

Abstract

Most of our knowledge on the subcellular events taking place from the moment that the action potential invades the nerve terminal until response is recorded in the postsynaptic cell comes from experiments performed on the neuromuscular synapse. This preparation which is most suitable for electrophysiological studies is unfortunately not adequate for biochemical experiments. Therefore, we are using synaptosomes from brain (intact or following osmotic disruption) as the alternative biochemical model for studying calcium transport systems in nerve terminals. Synaptosomes are the closest biochemical model structures to intact synapses (1, 2). They maintain membrane potentials as measured by voltage sensitive fluorescent probes (3), have osmotic properties similar to an intact cell, are more permeable to K than to Na (1) and release neurotransmitters in media containing calcium — provided depolarizing potassium concentrations or other depolarizing agents are present (1, 2, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford HF: Isolated nerve terminals as an in vitro preparation for the study of dynamic aspects of transmitter metabolism and release. In: Iverson, Iverson and Snyder (Eds), The Handbook of Psychopharmacology, Plenum Press, 1975, 1: 191–252.

    Google Scholar 

  2. Kelly RB, Deutsch JW, Carlson SC, Wagner JA: Biochemistry of neurotransmitter release. Ann. Rev. Neurosci. 2: 399–446, 1979.

    CAS  Google Scholar 

  3. Blaustein KP, Goldring JM: Membrane potentials in pinched off presynaptlc nerve terminals, monitored with a fluorescent probe. Evidence that synaptosomes have potassium difusion potential. J. Physiol. 247: 589–615, 1975.

    CAS  Google Scholar 

  4. Rahamimoff R: Principles of chemical signaling in the nervous system. In: JG Nicholls (Ed), The Role of Intercellular Signals: Navigation, Outcome and Consequences. Berlin: Dahlem.

    Google Scholar 

  5. Katz B: Nerve, Muscle and Synapse. New York, MacGraw-Hill, 1966.

    Google Scholar 

  6. Hagiwara S, Byerly L: Calcium channel. Ann. Rev. Neurosci. 4: 69–125, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA: The influence of calcium on sodium efflux in squid axon. J. Physiol. 200: 431–458, 1969.

    PubMed  CAS  Google Scholar 

  8. Blaustein MP, Ector AC: Carrier mediated sodium dependent and calcium dependent calcium efflux from pinched off presynaptic nerve terminals in vitro. Biochem. Biophys. Acta 419: 295–308, 1976.

    Article  CAS  Google Scholar 

  9. Rahamimoff H, Spanier R: Sodium dependent calcium uptake in membrane vesicles derived from rat brain synaptosome. FEBS Lett. 104: 111–114, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. DiPolo R: Ca pump driven by ATP in squid axon. Nature 274: 390–392, 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Sorensen RG, Mahler HR: Calcium stimulated adenosine triphosphatase in synaptic membrane. J. Neurochem. 37: 1407–1418, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Alnaes E, Rahamimoff R: On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. 248: 285–306, 1975.

    PubMed  CAS  Google Scholar 

  13. Blitz AL, Fine RE, Tosselli PA: Evidence that coated vesicles isolated from brain are calcium sequestering organelles resembling sarcoplasmic reticulum. J. Cell. Biol. 75: 135–147, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Kendrick NC, Blaustein MP, Fried RC, Ratzlaff RW: ATP dependent calcium storage in presynaptic nerve terminals. Nature 265: 246–248, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Politoff AL, Rose S, Pappas. GD: Calcium binding sites of synaptic vesicles of frog sartorius neuromuscular junction. J. Cell. Biol. 68: 818–823, 1978.

    Google Scholar 

  16. Henkart MP, Reese TS, Brinley FJ: Endoplasmic reticulum sequesters calcium in the squid giant axon. Science 202: 1300–1302, 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Requena J: Calcium transport and regulation in nerve fibers. Ann. Rev. Biophys. Bioeng. 12: 237–257, 1983.

    Article  CAS  Google Scholar 

  18. Erdreich A, Spanier R, Rahamimoff H: The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles. Europ. J. Pharmacol. 90: 193–202, 1983.

    Article  CAS  Google Scholar 

  19. Rahamimoff H, Spanier R: The asymmetric effect of lanthanides on Na+-gradient dependent Ca2+ uptake in synaptic plasma membrane vesicles. Biochim. Biophys. Acta 773: 279–289, 1984.

    CAS  Google Scholar 

  20. Schellenberg GD, Swanson PD: Sodium dependent and calcium dependent calcium transport by rat brain microsomes. Biochim. Biophys. Acta 648: 13–27, 1981.

    CAS  Google Scholar 

  21. Barzilai A, Spanier R, Rahamimoff H: Isolation, purification and reconstitution of the Na+ gradient dependent Ca transporter (Na+-Ca2+) exchanger from brain synaptic plasma membrane. Proc. Natl. Acad. Sci. 81: 6521–6525, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Papazian D, Rahamimoff H, Goldin SM: Reconstitution and purification by transport specifity fractions of an ATP dependent calcium transport component from synaptosomes. Proc. Natl. Acad. Sci. 76: 3708–3712, 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Papazian D, Rahamimoff H, Goldin SM: Partial purification and functional reconstitution of a calmodulin-activated, adenosine-5’-phosphate dependent calcium pump from synaptic plasma membrane. J. Neurosci. 4: 1933–1943, 1984.

    PubMed  CAS  Google Scholar 

  24. Chan SY, Hess EJ, Rahamimoff H, Goldin SM: Purification and immunological characterization of a calcium pump from bovine brain synaptosomal vesicles. J. Neurosci. 4: 1468–1478, 1984.

    PubMed  CAS  Google Scholar 

  25. Gasko DD, Knowles AF, Shertzer HG, Suolinna EH, Racker E: The use of ion exchange resin for studying ion transport in biological systems. Anal. Biochem. 72: 57–65, 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Sheltway A, Dawson RMC: Chromatographie and Electrophoretic Techniques. In: I Smith (Ed), Vol 1, pp.450–493, 1969.

    Google Scholar 

  27. Schuldiner S, Kaback R: Membrane potential and active transport in membrane vesicles from E. Coli. Biochem. 24: 5451–5460, 1975.

    Google Scholar 

  28. Mullins LJ: The generation of electric current in cardiac fibers by Na-Ca exchange. Ann. J. Physiol. 236: C103-C110, 1979.

    Google Scholar 

  29. Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254: 6232–6235, 1979.

    PubMed  CAS  Google Scholar 

  30. Horackova M, Vassort G: Sodium-calcium exchange in regulation of cardiac contractility. J. Gen. Physiol. 73: 403–424, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Hriciga A, Lehn JM: PH regulation of divalent/monovalent Ca/K cation transport selectivity by a macrocyclic carrier molecule. Proc. Natl. Acad. Sci. U.S.A. 80: 6426–6428, 1980.

    Article  Google Scholar 

  32. Oakley BR, Kirsch DR, Morris NR: A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gel. Anal. Biochem. 105: 361–363, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Rahamimoff, H., Barzilai, A., Erdreich, A., Spanier, R. (1986). Molecular Properties of Isolated Ca2+ Transport Systems from Nerve Terminals. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics