Skip to main content

Several Potassium Conductances Modulate the Excitability of Frog Motor Nerve Terminals

  • Chapter
Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

Abstract

A nerve impulse propagating along a motor axon normally initiates a single action potential at points where the unmyelinated terminals branch off from their parent axon. In some vertebrate nerve-muscle preparations, this action potential continues to propagate actively along some portion of the nerve terminals (17), whereas in others it most probably depolarizes the terminals by only a passive spread of current (7). In either case, the resultant depolarization of the nerve terminals Is sufficient to trigger the synchronous release of the transmitter, acetylcholine (ACh), Into the junctional cleft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams P.K., Brown D.A. and Constanti A. (1982). M-currents and other potassium currents in bullfrog sympathetic neurones. J. Physiol. 330, 537–572.

    PubMed  CAS  Google Scholar 

  2. Alvarez-Leefmans F.J. and Miledl R. (1980). Voltage sensitive calcium entry in frog notoneurones. J. Physiol. 308, 241–257.

    PubMed  CAS  Google Scholar 

  3. Barrett E.F. and Barrett J.N. (1976). Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J. Physiol. 255, 737–774.

    PubMed  CAS  Google Scholar 

  4. Barrett E.F., Barrett J.N. and Crill W.E. (1980). Voltage-sensitive outward currents in cat motoneurones. J. Physiol. 304, 251–276.

    PubMed  CAS  Google Scholar 

  5. Benoit P.R. and Mambrini J. (1970). Modification of transmitter release by ions which prolong the presynaptic action potential. J. Physiol. (Lond.) 210, 681–695.

    CAS  Google Scholar 

  6. Bernardo L.S. and Prince D.A. (1982). Ionic mechanisms of cholinergic excitation in mammalian hippocampal pyramidal cells. Brain Res. 249, 333–344.

    Article  Google Scholar 

  7. Brigant J.L. and Mallart A. (1982). Presynaptic currents in mouse motor endings. J. Physiol. (Lond.) 333, 619–636.

    CAS  Google Scholar 

  8. David G., Selzer M.E. and Yaari Y. (1984). Suppression by phenytoin of convulsant-induced afterdischarges at presynaptic nerve terminals. Brain Res. (in the press).

    Google Scholar 

  9. Frankenhaeuser B. and Hodgkin A.L. (1957). The action of calcium on the electrical properties of squid axons. J. Physiol. 137, 218–244.

    PubMed  CAS  Google Scholar 

  10. Galvan M, Grafe P. and ten Bruggencate G. (1982). Convulsant actions of 4-aminopyridine on the guinea-pig olfactory cortex slice. Brain Res. 241, 75–86.

    Article  PubMed  CAS  Google Scholar 

  11. Galvan M. and Sedlmeir C. (1984). Outward currents in voltage-clamped rat sympathetic neurones. J. Physiol. 356, 115–133.

    PubMed  CAS  Google Scholar 

  12. Gorman A. and Herman A.L.F. (1979). Internal effects of divalent cations on potassium permeability in molluscan neurones. J. Physiol. 296, 393–410.

    PubMed  CAS  Google Scholar 

  13. Gundersen C.B., Katz B. and Miledi R. (1982). The antagonism between botullnum toxin and calcium in motor nerve terminals. Proc. R. Soc. Lond. B. 216, 369–376.

    Article  PubMed  CAS  Google Scholar 

  14. Gutnick M.J. and Prince D.A. (1972). Thalamocortical relay neurons: antldromlc invasion of spikes from a cortical eplleptogenic focus. Science 176, 424–426.

    Article  PubMed  CAS  Google Scholar 

  15. Hotson J.R. and Prince D.A. (1980). A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurones. J. Neurophysiol. 43, 409–419.

    PubMed  CAS  Google Scholar 

  16. Illes P. and Thesleff S. (1978). 4-Aminopyridine and evoked transmitter release from motor nerve endings. Br. J. Pharmacol. 64, 623–629.

    PubMed  CAS  Google Scholar 

  17. Katz B. and Miledi R. (1965). Propagation of electric activity in motor nerve terminals. Proc. R. Soc. B. 161, 453–482.

    Article  CAS  Google Scholar 

  18. Katz B. and Miledl R. (1967). A study of synaptlc transmission in the absence of nerve impulses. J. Physiol. 192, 407–436.

    PubMed  CAS  Google Scholar 

  19. Katz B. and Miledi R. (1969). Tetrodotoxin-resistant electric activity in presynaptic terminals. J. Physiol. 203, 459–487.

    PubMed  CAS  Google Scholar 

  20. Krnjevic K., PuiJ E. and Werman R. (1978). EGTA and motoneuron afterpotentials. J. Physiol. 275, 199–223.

    PubMed  CAS  Google Scholar 

  21. Mallart A. (1984). Presynaptic currents in frog motor endings. Pflugers Arch. 400, 8–13.

    Article  PubMed  CAS  Google Scholar 

  22. Meech R.W. (1978). Calcium-dependent potassium activation in nervous tissue. Ann. Rev. Biophys. Bioeng. 7, 1–18.

    Article  CAS  Google Scholar 

  23. Molgo J. and Thesleff S. (1982). Electrotonic properties of motor nerve terminals. Acta Physiol. Scand. 114, 271–275.

    Article  PubMed  CAS  Google Scholar 

  24. Noebels. J.L. and Prince D.A. (1977). Presynaptic origin of penicillin afterdischarges at mammalian nerve terminals. Brain Res. 138, 59–74.

    Article  PubMed  CAS  Google Scholar 

  25. Noebels. J.L. and Prince D.A. (1978). The development of focal seizures in cerebral cortex: role of axon terminal bursting. J. Neurophysiol. 41, 1267–1281.

    PubMed  CAS  Google Scholar 

  26. Randic M. and Straughan D.W. (1964). Antidromic activity at the rat phrenic nerve-diaphragm preparation. J. Physiol. 173, 130–148.

    PubMed  CAS  Google Scholar 

  27. Riker W.F. and Okamoto M. (1969). Pharmacology of motor nerve terminals. Ann. Rev. Pharmacol. 9, 173–208.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartzkroin P.A. and Prince D.A. (1980). Effects of TEA on hippocampal neurones. Brain Res. 185, 169–181.

    Article  PubMed  CAS  Google Scholar 

  29. Schwarz E. and Passow H. (1983). Ca-activated K channels in erythrocytes and excitable cells. Ann. Rev. Physiol. 45, 359–374.

    Article  CAS  Google Scholar 

  30. Scobey R.P. and Gabor A.J. (1975). Ectopic action-potential generation in epileptogenic cortex. J. Neurophysiol. 38, 383–394.

    PubMed  CAS  Google Scholar 

  31. Segal M. and Barker J.L. (1984). Rat hippocampal neurons in culture: Potassium conductances. J. Neurophysiol. 51, 1409–1433.

    PubMed  CAS  Google Scholar 

  32. Standaert F.G. (1963). Post-tetanic repetitive activity in cat soleus nerve. Its origin, cause and mechanism of generation. J. Gen. Physiol. 47, 53–70.

    Article  PubMed  CAS  Google Scholar 

  33. Werner G. (1960). Neuromuscular facilitation and antidromic discharges in motor nerves: their relation to activity in motor nerve terminals. J. Neurophysiol. 23, 171–187.

    PubMed  CAS  Google Scholar 

  34. Yaari Y., Konnerth A. and Heinemann U. (1983). Spontaneous epileptiform activity of CA1 hippocampal neurones in low extracellular calcium solutions. Exp. Brain Res. 51, 153–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

David, G., Yaari, Y. (1986). Several Potassium Conductances Modulate the Excitability of Frog Motor Nerve Terminals. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics