Advertisement

The Mechanism of Bursting in Aplysia Pacemaker Neurons

  • Robert S. Zucker
  • Richard H. Kramer
Part of the Topics in the Neurosciences book series (TNSC, volume 1)

Summary

Central neurons in the marine mollusc Aplysia generate endogenous bursts of action potentials as part of their normal pattern of activity. This pattern is thought to arise from an alternation of depolarizing waves due to calcium influx and hyperpolarizing waves due to potassium efflux. We have found that the hyperpolarization that terminates bursts and prevents firing until the next burst is caused not by a potassium current, but rather by a calcium-dependent inactivation of the calcium current underlying the depolarizing phase. In addition, we found that the depolarizing afterpotential at the end of each burst is due to a calcium-activated nonspecific cation current. These results help to resolve several controversies surrounding the mechanism of bursting in these neurons.

Keywords

Outward Current Calcium Current Potassium Current Potassium Conductance Calcium Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapp, P. E.: An atlas of cellular oscillators. J. Exp. Biol. 81: 281–306, 1979.PubMedGoogle Scholar
  2. 2.
    Meech, R. W.: Membrane potential oscillations in molluscan ‘burster’ neurones. J. Exp. Biol. 81: 217–279, 1979.Google Scholar
  3. 3.
    Eckert, R., Lux, H. D.: A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J. Physiol. 254: 129–151, 1976.PubMedGoogle Scholar
  4. 4.
    Gorman, A. L. F., Hermann, A., Thomas, M. V.: Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan bursting pace-maker neurone. J. Physiol. 327: 185–217, 1982.PubMedGoogle Scholar
  5. 5.
    Gorman, A. L. F., Hermann, A., Thomas, M. V.: Intracellular calcium and the control of neuronal pacemaker activity. Fed. Proc. 40: 2233–2239, 1981.PubMedGoogle Scholar
  6. 6.
    Thompson, S. H., Smith, S. J.: Depolarizing afterpotentials and burst production in molluscan pacemaker neurons. J. Neurophysiol. 39: 153–161, 1976.PubMedGoogle Scholar
  7. 7.
    Johnston, D.: Voltage, temperature, and ionic dependence of the slow outward current in Aplysia burst-firing neurones. J. Physiol. 298: 145–157, 1980.PubMedGoogle Scholar
  8. 8.
    Gorman, A. L. F., Hermann, A.: Internal effects of divalent cations on potassium permeability in molluscan neurones. J. Physiol. 296: 393–410, 1979.PubMedGoogle Scholar
  9. 9.
    Junge, D., Stephens, C. L.: Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. J. Physiol. 235: 155–181, 1973.PubMedGoogle Scholar
  10. 10.
    Barker, J. L., Gainer, J.: Studies on bursting pacemaker potential activity in molluscan neurones. I. Membrane properties and ionic contributions. Brain Res. 84: 461–477, 1975.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, S. J.: The mechanism of bursting pacemaker activity in neurons of the mollusc Tritonia diomedia. Ph.D. Dissertation, Univ. of Washington, Seattle, 1978.Google Scholar
  12. 12.
    Meech, R. W.: Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. 42A: 493–499, 1972.CrossRefGoogle Scholar
  13. 13.
    Gorman, A. L. F., Thomas, M. V.: Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic indicator dye arsenazo III. J. Physiol. 275: 357–376, 1978.PubMedGoogle Scholar
  14. 14.
    Kramer, R. H.: The ionic mechanism of bursting pacemaker activity in Aplysia neurons. Ph.D. Dissertation, Univ. of California, Berkeley, 1984.Google Scholar
  15. 15.
    Connor, J.: Time course separation of two inward currents in molluscan neurons. Brain Res. 119: 487–492, 1977.PubMedCrossRefGoogle Scholar
  16. 16.
    Winlow, W., Kandel, E. R.: The morphology of identified neurons in the abdominal ganglion of Aplysia californica. Brain Res. 112: 221–249, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Graubard, K.: Voltage attenuation within Aplysia neurons: The effect of branching pattern. Brain Res. 88: 325–332, 1975.PubMedCrossRefGoogle Scholar
  18. 18.
    Hermann, A., Gorman, A. L. F.: Effects of tetraethylammonium on potassium currents in a molluscan neuron. J. Gen. Physiol. 78: 87–110, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Meech, R. W., Standen, N. B.: Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J. Physiol. 249: 211–239, 1975.PubMedGoogle Scholar
  20. 20.
    Eckert, R., Tillotson, D.: Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J. Physiol. 314: 265–280, 1981.PubMedGoogle Scholar
  21. 21.
    Gorman, A. L. F., Thomas, M. V.: Potassium conductance and internal calcium accumulation in a molluscan neurone. J. Physiol. 308: 287–313, 1980.PubMedGoogle Scholar
  22. 22.
    Adams, D. J., Smith, S. J., Thompson, S. H.: Ionic currents in molluscan soma. Ann. Rev. Neurosci. 3: 141–167, 1980.PubMedCrossRefGoogle Scholar
  23. 23.
    Hofmeier, G., Lux, H. D.: The time course of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pflügers Arch. 391: 242–251, 1981.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong, B. S., Lecar, H., Adler, M.: Single calcium-dependent potassium channels in clonal anterior pituitary cells. Biophys. J. 39: 313–317, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Pallotta, B. S., Magleby, K. L., Barrett, J. N.: Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293: 471–474, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson, S. H.: Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. 265: 465–488, 1977.PubMedGoogle Scholar
  27. 27.
    Smith, T. G., Jr., Barker, J. L., Gainer, H.: Requirements for bursting pacemaker potential activity in molluscan neurones. Nature 253: 450–452, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • Robert S. Zucker
  • Richard H. Kramer

There are no affiliations available

Personalised recommendations