Skip to main content

The Mechanism of Bursting in Aplysia Pacemaker Neurons

  • Chapter
Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

  • 55 Accesses

Summary

Central neurons in the marine mollusc Aplysia generate endogenous bursts of action potentials as part of their normal pattern of activity. This pattern is thought to arise from an alternation of depolarizing waves due to calcium influx and hyperpolarizing waves due to potassium efflux. We have found that the hyperpolarization that terminates bursts and prevents firing until the next burst is caused not by a potassium current, but rather by a calcium-dependent inactivation of the calcium current underlying the depolarizing phase. In addition, we found that the depolarizing afterpotential at the end of each burst is due to a calcium-activated nonspecific cation current. These results help to resolve several controversies surrounding the mechanism of bursting in these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rapp, P. E.: An atlas of cellular oscillators. J. Exp. Biol. 81: 281–306, 1979.

    PubMed  CAS  Google Scholar 

  2. Meech, R. W.: Membrane potential oscillations in molluscan ‘burster’ neurones. J. Exp. Biol. 81: 217–279, 1979.

    Google Scholar 

  3. Eckert, R., Lux, H. D.: A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J. Physiol. 254: 129–151, 1976.

    PubMed  CAS  Google Scholar 

  4. Gorman, A. L. F., Hermann, A., Thomas, M. V.: Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan bursting pace-maker neurone. J. Physiol. 327: 185–217, 1982.

    PubMed  CAS  Google Scholar 

  5. Gorman, A. L. F., Hermann, A., Thomas, M. V.: Intracellular calcium and the control of neuronal pacemaker activity. Fed. Proc. 40: 2233–2239, 1981.

    PubMed  CAS  Google Scholar 

  6. Thompson, S. H., Smith, S. J.: Depolarizing afterpotentials and burst production in molluscan pacemaker neurons. J. Neurophysiol. 39: 153–161, 1976.

    PubMed  CAS  Google Scholar 

  7. Johnston, D.: Voltage, temperature, and ionic dependence of the slow outward current in Aplysia burst-firing neurones. J. Physiol. 298: 145–157, 1980.

    PubMed  CAS  Google Scholar 

  8. Gorman, A. L. F., Hermann, A.: Internal effects of divalent cations on potassium permeability in molluscan neurones. J. Physiol. 296: 393–410, 1979.

    PubMed  CAS  Google Scholar 

  9. Junge, D., Stephens, C. L.: Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. J. Physiol. 235: 155–181, 1973.

    PubMed  CAS  Google Scholar 

  10. Barker, J. L., Gainer, J.: Studies on bursting pacemaker potential activity in molluscan neurones. I. Membrane properties and ionic contributions. Brain Res. 84: 461–477, 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Smith, S. J.: The mechanism of bursting pacemaker activity in neurons of the mollusc Tritonia diomedia. Ph.D. Dissertation, Univ. of Washington, Seattle, 1978.

    Google Scholar 

  12. Meech, R. W.: Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. 42A: 493–499, 1972.

    Article  Google Scholar 

  13. Gorman, A. L. F., Thomas, M. V.: Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic indicator dye arsenazo III. J. Physiol. 275: 357–376, 1978.

    PubMed  CAS  Google Scholar 

  14. Kramer, R. H.: The ionic mechanism of bursting pacemaker activity in Aplysia neurons. Ph.D. Dissertation, Univ. of California, Berkeley, 1984.

    Google Scholar 

  15. Connor, J.: Time course separation of two inward currents in molluscan neurons. Brain Res. 119: 487–492, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Winlow, W., Kandel, E. R.: The morphology of identified neurons in the abdominal ganglion of Aplysia californica. Brain Res. 112: 221–249, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Graubard, K.: Voltage attenuation within Aplysia neurons: The effect of branching pattern. Brain Res. 88: 325–332, 1975.

    Article  PubMed  CAS  Google Scholar 

  18. Hermann, A., Gorman, A. L. F.: Effects of tetraethylammonium on potassium currents in a molluscan neuron. J. Gen. Physiol. 78: 87–110, 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Meech, R. W., Standen, N. B.: Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J. Physiol. 249: 211–239, 1975.

    PubMed  CAS  Google Scholar 

  20. Eckert, R., Tillotson, D.: Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J. Physiol. 314: 265–280, 1981.

    PubMed  CAS  Google Scholar 

  21. Gorman, A. L. F., Thomas, M. V.: Potassium conductance and internal calcium accumulation in a molluscan neurone. J. Physiol. 308: 287–313, 1980.

    PubMed  CAS  Google Scholar 

  22. Adams, D. J., Smith, S. J., Thompson, S. H.: Ionic currents in molluscan soma. Ann. Rev. Neurosci. 3: 141–167, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Hofmeier, G., Lux, H. D.: The time course of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pflügers Arch. 391: 242–251, 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Wong, B. S., Lecar, H., Adler, M.: Single calcium-dependent potassium channels in clonal anterior pituitary cells. Biophys. J. 39: 313–317, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Pallotta, B. S., Magleby, K. L., Barrett, J. N.: Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293: 471–474, 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson, S. H.: Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. 265: 465–488, 1977.

    PubMed  CAS  Google Scholar 

  27. Smith, T. G., Jr., Barker, J. L., Gainer, H.: Requirements for bursting pacemaker potential activity in molluscan neurones. Nature 253: 450–452, 1975.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Zucker, R.S., Kramer, R.H. (1986). The Mechanism of Bursting in Aplysia Pacemaker Neurons. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics