Regulation of Voltage-Sensitive Calcium Channels in Brain by Micromolar Affinity Benzodiazepine Receptors

  • R. J. DeLorenzo
  • W. C. Taft
  • W. T. Andrews
Part of the Topics in the Neurosciences book series (TNSC, volume 1)


Ca2+ is an important mediator of molecular events in the functioning nerve terminal (1, 2). An increase in cytoplasmic Ca2+ has been shown to regulate a variety of neuronal cell functions, including neurotransmitter release, stimulation of protein phosphorylation, and synaptic morphological changes (3). It is well-established that these events are directly dependent on the entry of extracellular Ca2+ into the presynaptic nerve terminal through specific voltage-gated Ca2+ channels (4,6). The central role of Ca2+ channels in stimulus-secretion coupling mechanisms has led to the extensive investigation of Ca2+ channel function in a wide variety of intact and broken cell preparations (7). Despite extensive electrophysiological characterization of Ca2+ channels in brain, the molecular nature and pharmacological characteristics of this major neuronal Ca2+ channel remain largely unclear.


Cobalt Manganese Norepinephrine Diazepam Acetylcholine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubin RP: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacology Review 22: 389–428, 1972.Google Scholar
  2. 2.
    Rasmussen H, Goodman DBP: Relationships between calcium and cyclic nucleotides in cell activation. Physiology Reviews 57: 421–509, 1977.Google Scholar
  3. 3.
    DeLorenzo RJ: Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41: 2265–2272, 1982.PubMedGoogle Scholar
  4. 4.
    Katz B, Miledi R: Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol 203: 689–706, 1970.Google Scholar
  5. 5.
    Katz B, Miledi R: Further study of the role of calcium in synaptic transmission. J Physiol 207: 789–801, 1970.PubMedGoogle Scholar
  6. 6.
    Miledi R: Transmitter release induced by injection of calcium ions into nerve terminals. Proceedings of the Royal Society, London 183: 421–425, 1973.CrossRefGoogle Scholar
  7. 7.
    Tsien RW: Calcium channels in excitable cell membranes. Ann Rev Physiol 45: 341–358, 1983.CrossRefGoogle Scholar
  8. 8.
    Lee KS, Tsien RW: Mechanisms of calcium channel blockade verapamil, D600, diltiazem and nitrendipine in single di-alysed heart cells. Nature 302: 790–794, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Reuter H: Calcium channel modulation by neurotransmitters, enzymes, and drugs. Nature 301: 569–574, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Fleckenstein A: Specific pharmacology of calcium in the myocardiam, cardiac pacemaker, and vascular smooth muscle. Ann Rev Pharmacol 17: 149–166, 1977.CrossRefGoogle Scholar
  11. 11.
    Triggle D.J., Janis RA: Nitrendipine: Binding sites and mechanisms of action. In: A Scriabine, S Vanov, and K Deck (eds) Nitrendipine. Urban and Schwarzenberg, Baltimore-Munich, 1984, pp. 33–52.Google Scholar
  12. 12.
    Reuter H: Divalent ions as charge carriers in excitable membranes. Prog Biophys Molec Biol,26: 1–43, 1973.CrossRefGoogle Scholar
  13. 13.
    Gould RJ, Murphy KMMM, Snyder SH: [ 3H] Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sci USA 79: 3656–3660, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Nachshen DA, Blanstein MP: The effects of some organic calcium antagonists on calcium influx in presynaptic nerve terminals. Mol Pharm 16: 579–586, 1979.Google Scholar
  15. 15.
    Freedman SB, Miller RJ: Effects of nitrendipine on voltage sensitive calcium channels in brain and neuronal cultured cells. In: A Scriabine, S Vanov, and K Deck (eds) Nitrendipine. Urban and Schwarzenberg, Baltimore-Munich, 1984, pp 79–90.Google Scholar
  16. 16.
    Van der Kloot, Kita H: The effects of “calcium-antagonist” verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish. Comp Biochem Physiol 50C: 121–125, 1975.Google Scholar
  17. 17.
    Tallman JF, Paul SM, Skolnick P, Gallagher DW: Receptors for the age of anxiety: Pharmacology of the benzodiaz-epines. Science 207: 274–281, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Bowling AC, DeLorenzo RJ: Micromolar benzodiazepine receptors: identification and characterization in central nervous system. Science 216: 1247–1250, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    DeLorenzo RJ: The calmodulin hypothesis of neurotransmission. Cell Calcium 2: 365–385, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Leslie SW, Friedman MB, Coleman RR: Effects of chlordiaz-epine on depolarization-induced calcium influx into synaptosomes. Biochem Pharmacol 29: 2439–2443, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Taft WC, DeLorenzo RJ: Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations. Proc Natl Acad Sci USA 81: 3118–3122, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrendelli JA, Daniels-McQueen S: Comparative actions of phenytoin and other anticonvulsant drugs on potassium-and veratridine-stimulated calcium uptake in synaptosomes. J Pharma exp Ther 220: 29–34, 1982.Google Scholar
  23. 23.
    Mohler H, Battersby MK, Richards JG: Benzodiazepine receptor protein identified and visualized in brain tissue by a photoaffinity label. Proc Natl Acad Sci USA 77: 1666–1670, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Meyer EM, Cooper JR: Cobalt ions dissociate between calcium uptake through voltage-dependent sodium and calcium channels in synaptosomes. Brain Res 265: 173–176, 1983.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • R. J. DeLorenzo
  • W. C. Taft
  • W. T. Andrews

There are no affiliations available

Personalised recommendations