Skip to main content

The Role of Calcium in Triggering the Release of Transmitter at the Vertebrate Neuromuscular Junction. An Analysis of the Effects of Drugs

  • Chapter
Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

  • 55 Accesses

Abstract

Katz (1) in his Sherrington lecture summarized our understanding of the microphysiology of the presynaptic terminals of the vertebrate neuromuscular junction (nmj). The arrival of a nervous impulse causes a transient increase in the calcium permeability of the plasma membrane and the associated entry of calcium ions triggers the synchronized release of quanta of transmitter. The magnitude of the evoked response, recorded as the endplate potential (EPP) is therefore primarily dependent on the concentration of extracellular calcium (2). There is also a spontaneous release of quantal packets of acetylcholine (ACh), recorded as the miniature endplate potentials (MEPPs), and the MEPP frequency is determined, at least in part, on the other hand, by the concentration of intracellular calcium at the terminals (3, 4). However, we still lack a firm conclusion as to how the intracellular calciumions trigger both the spontaneous and the evoked release of transmitter. Since the earlier biophysical studies of Katz and Miledl a large number of pharmacological agents have been tested on the vertebrate nmj, and the purpose of this very brief review is to attempt to determine their sites of action in the hope of discovering some of the biochemical events of exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz B: The release of neural transmitter substances. Liverpool University Press, 1969.

    Google Scholar 

  2. Crawford AC: The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents. J. Physiol. 240: 255–278, 1974.

    PubMed  CAS  Google Scholar 

  3. Alnaes E, Rahamimoff R: On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. 248: 285–306. 1975.

    PubMed  CAS  Google Scholar 

  4. Statham HE, Duncan CJ: The action of ionophores at the frog neuromuscular junction. Life Sci. 17: 1401–1406, 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Thesleff S, Molgo J: A new type of transmitter release at the neuromuscular junction. Neuroscience 9: 1–8, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Tauc, L: Nonvesicular release of neurotransmitter. Physiol Rev. 62: 857–893, 1982.

    PubMed  CAS  Google Scholar 

  7. Blaustein MP, Ratzlaff RW, Kendrick NK: The regulation of intracellular calcium in presynaptic nerve terminals. Ann. N.Y. Acad. Sci. 307: 195–212, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Blaustein MP, Ratzlaff RW, Schweitzer ES: Control of intracellular calcium in presynaptic nerve terminals. Federation Proc. 39: 2790–2795, 1980.

    CAS  Google Scholar 

  9. Glossmann H: Molecular approach to the calcium channel. XI Congress International Society for Heart Research, London 1983.

    Google Scholar 

  10. Ferry DR, Goll A, Glossmann H: Putative calcium channel molecular weight determination by target size analysis. N.S. Arch. Pharmacol. 323: 292–297, 1983.

    Article  CAS  Google Scholar 

  11. Nicholls DG, Åkerman KEO: Biochemical approaches to the study of cytosolic calcium regulation in nerve endings. Phil. Trans. Roy. Soc. Lond. 296: 115–122, 1981.

    Article  CAS  Google Scholar 

  12. Duncan CJ: Properties of the Ca2+-ATPase activity of mammalian synaptic membrane preparations. J. Neurochem. 27: 1277–1279, 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Akerman KEO, Nicholls DG: Ca2+ transport and the regulation of transmitter release in isolated nerve endings. Trends in Biochem. Sci. 8: 63–4, 1983.

    Article  Google Scholar 

  14. Lin SC, Way EL: Calcium-activated ATPases in presynaptic nerve endings. J. Neurochem. 39: 1641–1651, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Ross DH, Cardenas HL: Calmodulin stimulation of Ca2+-dependent ATP hydrolysis and ATP-dependent Ca2+ transport in synaptio membranes. J. Neurochem. 41: 161–171, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell AJ: Intracelular calcium. Its universial role as regulator. John Wiley & Sons Ltd, 1983.

    Google Scholar 

  17. Blaustein MP, Ratzlaff RW, Kendrick NC, Schweitzer, ES: Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol. 72: 15–41, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Tillotson DL, Gorman ALF: Localization of neuronal Ca2+ buffering near plasma membrane studied with different divalent cations. Cell. Molec. Neurobiol. 3: 297–310, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Lüllmann, H, Peters T, Preuner J: Role of the plasmalemma for calcium homeostasis and for excitation-contraction coupling in cardiac muscle. In: AJ Drake-Holland and MIM Noble (eds) Cardiac Metabolism. John Wiley & Sons Ltd, 1983, p. 1.

    Google Scholar 

  20. Blaustein MP, Ratzlaff RW, Schweitzer, ES: Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J. Gen. Physiol. 72: 43–66, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Somlyo AP: Cellular site of calcium regulation. Nature 309: 516–517, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Molgo J, Thesleff S: Studies on the mode of action of botulinum toxin type A at the frog neuromuscular junction. Brain Res. 297: 309–316, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Rahamimoff H, Abramovitz E: Ca transport and ATPase activity of synaptosomal vesicles from rat brain. FEBS Letts. 92: 163–167, 1978.

    Article  CAS  Google Scholar 

  24. Israel M, Manaranche R, Marsal J, Meunier FM, Morel N, Frachon P, Lesbats B: ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. J. Membr. Biol. 54: 115–126, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Rephaeli A, Parsons SM: Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles. Proc. Nat. Acad. Sci. U.S.A. 79: 5783–5787, 1982.

    Article  CAS  Google Scholar 

  26. Duncan CJ, Publicover SJ: Inhibitory effects of cholinergic agents on the release of transmitter at the frog neuromuscular junction. J. Physiol. 294: 91–103, 1979.

    PubMed  CAS  Google Scholar 

  27. Miyamoto MD: The actions of cholinergic drugs on motor nerve terminals. Pharmacol. Rev. 29: 221–247, 1978.

    Google Scholar 

  28. Rahamimoff R, Yaari Y: Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. 228: 241–257, 1973.

    PubMed  CAS  Google Scholar 

  29. Balnave RJ, Gage PW: On facilitation of transmitter release at the toad neuromuscular junction. J. Physiol. 239: 657–675, 1974.

    PubMed  CAS  Google Scholar 

  30. Datyner NB, Gage PW: Phasic secretion of acetyloholine at a mammalian neuromuscular junction. J. Physiol. 303: 299–314, 1980.

    PubMed  CAS  Google Scholar 

  31. Kita K, Narita K, Van der Kloot W: Effects of temperature on the decline in miniature end-plate potential frequency following a tetanus. Brain Res. 190: 435–445, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Duncan CJ, Statham HE: Interacting effects of temperature and extracellular calcium on the spontaneous release of transmitter at the frog neuromuscular junction. J. Physiol. 268: 319–333, 1977.

    PubMed  CAS  Google Scholar 

  33. Barrett EF, Barrett JN, Botz D, Chang DB, Mahaffey D: Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromusoular junction. J. Physiol. 279: 253–273, 1978.

    PubMed  CAS  Google Scholar 

  34. Publicover SJ, Duncan CJ: Dantrolene and the effect of temperature on the spontaneous release of transmitter at the frog neuromuscular junction. Experientia 37: 859–860, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Hubbard JI, Jones SF, Landau EM: The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation. J. Physiol. 216: 591–609, 1971.

    PubMed  CAS  Google Scholar 

  36. Ward D, Crowley WJ, Johns TR: Effect of temperature at the neuromuscular junction. Am. J. Physiol. 222: 216–219, 1972.

    PubMed  CAS  Google Scholar 

  37. Duncan CJ: Role of calcium in triggering the release of transmitters at the neuromuscular junction. Cell Calcium 4: 171–193, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Erulkar SD: The modulation of neurotransmitter release at synaptic junctions. Rev. Physiol. Bioohem. Pharmacol. 98: 64–175, 1983.

    Google Scholar 

  39. Carlen PL, Kosower EM, Werman R: The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog. Brain Res. 117: 257–276, 1976.

    Article  PubMed  CAS  Google Scholar 

  40. Kita H, Van der Kloot W: Action of Co and Ni at the frog neuromuscular junction. Nature, New Biol. 245: 52–53, 1973.

    Article  CAS  Google Scholar 

  41. Cull-Candy SG, Lundh H, Thesleff S: Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. 260: 177–203, 1976.

    PubMed  CAS  Google Scholar 

  42. Molgo J, Lemeignan M, Lechat P: Effects of 4-aminopyridine at the frog neuromuscular junction. J. Pharmacol. Exp. Therap. 203: 653–663, 1977.

    CAS  Google Scholar 

  43. Colomo F, Rahamimoff R: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. 198: 203–218, 1968.

    PubMed  CAS  Google Scholar 

  44. Landau EM, Nachshen DA: The interaction of pH and divalent cations at the neuromuscular junction. J. Physiol. 251: 775–790, 1975.

    PubMed  CAS  Google Scholar 

  45. Manalis RS, Cooper GP, Pomeroy SL: Effects of lead on neuromuscular transmission in the frog. Brain Res. 294: 95–109, 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Pickett JB, Bornstein JC: Some effects of lead at mammalian neuromuscular junction. Am. J. Physiol. 246: C271–C276, 1984.

    PubMed  CAS  Google Scholar 

  47. Uchiyama T, Molgó J, Lemeignan M: Presynaptic effects of bekanamycin at the frog neuromuscular junction. Reversibility by calcium and aminopyridines. Eur. J. Pharmacol. 72: 271–280, 1981.

    Article  PubMed  CAS  Google Scholar 

  48. Pecot-Dechavassine M: Action of vinblastine on the spontaneous release of acetylcholine at the frog neuromuscular junction. J. Physiol. 261: 31–48, 1976.

    PubMed  CAS  Google Scholar 

  49. Dreyer F, Schmitt A: Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch. 399: 228–234, 1983.

    Article  PubMed  CAS  Google Scholar 

  50. Kita H, Narita K, Van der Kloot W: The relation between tonicity and impulse-evoked transmitter release in the frog. J. Physiol. 325: 213–222, 1982.

    PubMed  CAS  Google Scholar 

  51. Rubin LL, Gorio A, Mauro A: Effect of concanavalin A on black widow spider venom activity at the neuromuscular junction: implications for mechanisms of venom action. Brain Res. 143: 107–124, 1978.

    Article  PubMed  CAS  Google Scholar 

  52. Gorio A, Mauro A: Reversibility and mode of action of black widow spider venom on the vertebrate neuromuscular junction. J. Gen. Physiol. 73: 245–263, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Burgoyne RD, Geisow MJ, Barron J: Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine. Proc. Roy. Soc. Lond. B 216: 111–115, 1982.

    Article  CAS  Google Scholar 

  54. Publicover SJ: Presynaptic action of trifluoperazine at the frog neruromuscular junction. N.S. Arch. Pharmacol. 322: 83–88, 1983.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Duncan, C.J. (1986). The Role of Calcium in Triggering the Release of Transmitter at the Vertebrate Neuromuscular Junction. An Analysis of the Effects of Drugs. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics