The Role of Calcium in Triggering the Release of Transmitter at the Vertebrate Neuromuscular Junction. An Analysis of the Effects of Drugs

  • C. J. Duncan
Part of the Topics in the Neurosciences book series (TNSC, volume 1)


Katz (1) in his Sherrington lecture summarized our understanding of the microphysiology of the presynaptic terminals of the vertebrate neuromuscular junction (nmj). The arrival of a nervous impulse causes a transient increase in the calcium permeability of the plasma membrane and the associated entry of calcium ions triggers the synchronized release of quanta of transmitter. The magnitude of the evoked response, recorded as the endplate potential (EPP) is therefore primarily dependent on the concentration of extracellular calcium (2). There is also a spontaneous release of quantal packets of acetylcholine (ACh), recorded as the miniature endplate potentials (MEPPs), and the MEPP frequency is determined, at least in part, on the other hand, by the concentration of intracellular calcium at the terminals (3, 4). However, we still lack a firm conclusion as to how the intracellular calciumions trigger both the spontaneous and the evoked release of transmitter. Since the earlier biophysical studies of Katz and Miledl a large number of pharmacological agents have been tested on the vertebrate nmj, and the purpose of this very brief review is to attempt to determine their sites of action in the hope of discovering some of the biochemical events of exocytosis.


Botulinum Toxin Neuromuscular Junction Transmitter Release Spontaneous Release Presynaptic Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz B: The release of neural transmitter substances. Liverpool University Press, 1969.Google Scholar
  2. 2.
    Crawford AC: The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents. J. Physiol. 240: 255–278, 1974.PubMedGoogle Scholar
  3. 3.
    Alnaes E, Rahamimoff R: On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. 248: 285–306. 1975.PubMedGoogle Scholar
  4. 4.
    Statham HE, Duncan CJ: The action of ionophores at the frog neuromuscular junction. Life Sci. 17: 1401–1406, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Thesleff S, Molgo J: A new type of transmitter release at the neuromuscular junction. Neuroscience 9: 1–8, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Tauc, L: Nonvesicular release of neurotransmitter. Physiol Rev. 62: 857–893, 1982.PubMedGoogle Scholar
  7. 7.
    Blaustein MP, Ratzlaff RW, Kendrick NK: The regulation of intracellular calcium in presynaptic nerve terminals. Ann. N.Y. Acad. Sci. 307: 195–212, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Blaustein MP, Ratzlaff RW, Schweitzer ES: Control of intracellular calcium in presynaptic nerve terminals. Federation Proc. 39: 2790–2795, 1980.Google Scholar
  9. 9.
    Glossmann H: Molecular approach to the calcium channel. XI Congress International Society for Heart Research, London 1983.Google Scholar
  10. 10.
    Ferry DR, Goll A, Glossmann H: Putative calcium channel molecular weight determination by target size analysis. N.S. Arch. Pharmacol. 323: 292–297, 1983.CrossRefGoogle Scholar
  11. 11.
    Nicholls DG, Åkerman KEO: Biochemical approaches to the study of cytosolic calcium regulation in nerve endings. Phil. Trans. Roy. Soc. Lond. 296: 115–122, 1981.CrossRefGoogle Scholar
  12. 12.
    Duncan CJ: Properties of the Ca2+-ATPase activity of mammalian synaptic membrane preparations. J. Neurochem. 27: 1277–1279, 1976.PubMedCrossRefGoogle Scholar
  13. 13.
    Akerman KEO, Nicholls DG: Ca2+ transport and the regulation of transmitter release in isolated nerve endings. Trends in Biochem. Sci. 8: 63–4, 1983.CrossRefGoogle Scholar
  14. 14.
    Lin SC, Way EL: Calcium-activated ATPases in presynaptic nerve endings. J. Neurochem. 39: 1641–1651, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Ross DH, Cardenas HL: Calmodulin stimulation of Ca2+-dependent ATP hydrolysis and ATP-dependent Ca2+ transport in synaptio membranes. J. Neurochem. 41: 161–171, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Campbell AJ: Intracelular calcium. Its universial role as regulator. John Wiley & Sons Ltd, 1983.Google Scholar
  17. 17.
    Blaustein MP, Ratzlaff RW, Kendrick NC, Schweitzer, ES: Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol. 72: 15–41, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Tillotson DL, Gorman ALF: Localization of neuronal Ca2+ buffering near plasma membrane studied with different divalent cations. Cell. Molec. Neurobiol. 3: 297–310, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Lüllmann, H, Peters T, Preuner J: Role of the plasmalemma for calcium homeostasis and for excitation-contraction coupling in cardiac muscle. In: AJ Drake-Holland and MIM Noble (eds) Cardiac Metabolism. John Wiley & Sons Ltd, 1983, p. 1.Google Scholar
  20. 20.
    Blaustein MP, Ratzlaff RW, Schweitzer, ES: Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J. Gen. Physiol. 72: 43–66, 1978.PubMedCrossRefGoogle Scholar
  21. 21.
    Somlyo AP: Cellular site of calcium regulation. Nature 309: 516–517, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Molgo J, Thesleff S: Studies on the mode of action of botulinum toxin type A at the frog neuromuscular junction. Brain Res. 297: 309–316, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Rahamimoff H, Abramovitz E: Ca transport and ATPase activity of synaptosomal vesicles from rat brain. FEBS Letts. 92: 163–167, 1978.CrossRefGoogle Scholar
  24. 24.
    Israel M, Manaranche R, Marsal J, Meunier FM, Morel N, Frachon P, Lesbats B: ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. J. Membr. Biol. 54: 115–126, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Rephaeli A, Parsons SM: Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles. Proc. Nat. Acad. Sci. U.S.A. 79: 5783–5787, 1982.CrossRefGoogle Scholar
  26. 26.
    Duncan CJ, Publicover SJ: Inhibitory effects of cholinergic agents on the release of transmitter at the frog neuromuscular junction. J. Physiol. 294: 91–103, 1979.PubMedGoogle Scholar
  27. 27.
    Miyamoto MD: The actions of cholinergic drugs on motor nerve terminals. Pharmacol. Rev. 29: 221–247, 1978.Google Scholar
  28. 28.
    Rahamimoff R, Yaari Y: Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. 228: 241–257, 1973.PubMedGoogle Scholar
  29. 29.
    Balnave RJ, Gage PW: On facilitation of transmitter release at the toad neuromuscular junction. J. Physiol. 239: 657–675, 1974.PubMedGoogle Scholar
  30. 30.
    Datyner NB, Gage PW: Phasic secretion of acetyloholine at a mammalian neuromuscular junction. J. Physiol. 303: 299–314, 1980.PubMedGoogle Scholar
  31. 31.
    Kita K, Narita K, Van der Kloot W: Effects of temperature on the decline in miniature end-plate potential frequency following a tetanus. Brain Res. 190: 435–445, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Duncan CJ, Statham HE: Interacting effects of temperature and extracellular calcium on the spontaneous release of transmitter at the frog neuromuscular junction. J. Physiol. 268: 319–333, 1977.PubMedGoogle Scholar
  33. 33.
    Barrett EF, Barrett JN, Botz D, Chang DB, Mahaffey D: Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromusoular junction. J. Physiol. 279: 253–273, 1978.PubMedGoogle Scholar
  34. 34.
    Publicover SJ, Duncan CJ: Dantrolene and the effect of temperature on the spontaneous release of transmitter at the frog neuromuscular junction. Experientia 37: 859–860, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Hubbard JI, Jones SF, Landau EM: The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation. J. Physiol. 216: 591–609, 1971.PubMedGoogle Scholar
  36. 36.
    Ward D, Crowley WJ, Johns TR: Effect of temperature at the neuromuscular junction. Am. J. Physiol. 222: 216–219, 1972.PubMedGoogle Scholar
  37. 37.
    Duncan CJ: Role of calcium in triggering the release of transmitters at the neuromuscular junction. Cell Calcium 4: 171–193, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Erulkar SD: The modulation of neurotransmitter release at synaptic junctions. Rev. Physiol. Bioohem. Pharmacol. 98: 64–175, 1983.Google Scholar
  39. 39.
    Carlen PL, Kosower EM, Werman R: The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog. Brain Res. 117: 257–276, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Kita H, Van der Kloot W: Action of Co and Ni at the frog neuromuscular junction. Nature, New Biol. 245: 52–53, 1973.CrossRefGoogle Scholar
  41. 41.
    Cull-Candy SG, Lundh H, Thesleff S: Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. 260: 177–203, 1976.PubMedGoogle Scholar
  42. 42.
    Molgo J, Lemeignan M, Lechat P: Effects of 4-aminopyridine at the frog neuromuscular junction. J. Pharmacol. Exp. Therap. 203: 653–663, 1977.Google Scholar
  43. 43.
    Colomo F, Rahamimoff R: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. 198: 203–218, 1968.PubMedGoogle Scholar
  44. 44.
    Landau EM, Nachshen DA: The interaction of pH and divalent cations at the neuromuscular junction. J. Physiol. 251: 775–790, 1975.PubMedGoogle Scholar
  45. 45.
    Manalis RS, Cooper GP, Pomeroy SL: Effects of lead on neuromuscular transmission in the frog. Brain Res. 294: 95–109, 1984.PubMedCrossRefGoogle Scholar
  46. 46.
    Pickett JB, Bornstein JC: Some effects of lead at mammalian neuromuscular junction. Am. J. Physiol. 246: C271–C276, 1984.PubMedGoogle Scholar
  47. 47.
    Uchiyama T, Molgó J, Lemeignan M: Presynaptic effects of bekanamycin at the frog neuromuscular junction. Reversibility by calcium and aminopyridines. Eur. J. Pharmacol. 72: 271–280, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Pecot-Dechavassine M: Action of vinblastine on the spontaneous release of acetylcholine at the frog neuromuscular junction. J. Physiol. 261: 31–48, 1976.PubMedGoogle Scholar
  49. 49.
    Dreyer F, Schmitt A: Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch. 399: 228–234, 1983.PubMedCrossRefGoogle Scholar
  50. 50.
    Kita H, Narita K, Van der Kloot W: The relation between tonicity and impulse-evoked transmitter release in the frog. J. Physiol. 325: 213–222, 1982.PubMedGoogle Scholar
  51. 51.
    Rubin LL, Gorio A, Mauro A: Effect of concanavalin A on black widow spider venom activity at the neuromuscular junction: implications for mechanisms of venom action. Brain Res. 143: 107–124, 1978.PubMedCrossRefGoogle Scholar
  52. 52.
    Gorio A, Mauro A: Reversibility and mode of action of black widow spider venom on the vertebrate neuromuscular junction. J. Gen. Physiol. 73: 245–263, 1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Burgoyne RD, Geisow MJ, Barron J: Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine. Proc. Roy. Soc. Lond. B 216: 111–115, 1982.CrossRefGoogle Scholar
  54. 54.
    Publicover SJ: Presynaptic action of trifluoperazine at the frog neruromuscular junction. N.S. Arch. Pharmacol. 322: 83–88, 1983.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • C. J. Duncan

There are no affiliations available

Personalised recommendations