A Channel View at Ca Inactivation

  • H. D. Lux
  • A. M. Brown
Part of the Topics in the Neurosciences book series (TNSC, volume 1)


Ca currents rise and fall during a step change in potential (see 1–3) and these changes are termed activation and inactivation. Activation is voltage-dependent but the voltage dependence of inactivation has been recently contested (4–8). The occurrence of inactivation may be exaggerated because outward K currents, particularly Ca-activated currents, and other nonspecific outward currents have time courses that coincide with inactivation. The process is greatly reduced when outward currents are minimized. Tail currents measured at return potentials where outward currents should be negligible have envelopes that follow the rise and fall of Ica and the result is readily taken as evidence of inactivation of Ica (9, see also 10).


Single Channel Outward Current Calcium Current Cell Current Dependent Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kostyuk PG, Krishtal OA: Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J. Physiol. (Lond.) 270: 569–580, 1977.PubMedGoogle Scholar
  2. 2.
    Akaike N, Lee KS, Brown AM: The calcium currents of Helix neuron. J. Gen. Physiol. 71: 509–532, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Byerly L, Hagiwara S: Calcium currents in internally perfused nerve cell bodies of Limnea Stagnalis. J. Physiol. (Lond.) 322: 503–528, 1982.PubMedGoogle Scholar
  4. 4.
    Brehm P, Eckert R: Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202: 1203–1206, 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Tillotson D: Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc. Natl. Acad. Sci. USA 77: 1497–1500, 1979.CrossRefGoogle Scholar
  6. 6.
    Brehm P, Eckert R, Tillotson D: Calcium-mediated inactivation of calcium current in Paramecium. J. Physiol. (Lond.) 306: 193–203, 1980.PubMedGoogle Scholar
  7. 7.
    Eckert R, Ewald D: Residual calcium ions depress activation of calcium-dependent current. Science 216: 730–733, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Ashcroft FM, Stanfield PR: Calcium dependence of the inactivation of calcium currents in skeletal muscles fibers of an insect. Science 213: 224–225, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Eckert R, Ewald D: Inactivation of calcium conductance characterized by tail current measurements in neurones of Aplysia Californica. J. Physiol. (Lond.) 345: 549–565, 1983.PubMedGoogle Scholar
  10. 10.
    Brown AM, Tsuda Y, Wilson DL: A description of activation and conduction in calcium channels based on tail and turn-on current measurements. J. Physiol. (Lond.) 344: 549–584, 1983.PubMedGoogle Scholar
  11. 11.
    Standen NB, Stanfield PR: A binding-site model for calcium channel inactivation that depends on calcium entry. Proc. R. Soc. (Lond.) B217, 101–110, 1982.Google Scholar
  12. 12.
    Chad J, Eckert R, Ewald D: Kinetics of calcium-dependent inactivation of calcium current in voltage-clamped neurones of Aplysia Californica. J. Physiol. (Lond.) 347: 279–300, 1984.PubMedGoogle Scholar
  13. 13.
    Fox AP: Voltage-dependent inactivation of a calcium channel. Proc. Natl. Acad. Sci. USA 78: 953–956, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Fukushima Y, Hagiwara S: Voltage-gated Ca2+ channel in mouse myeloma cells. Proc. Natl. Acad. Sci. USA 80: 2240–2242, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    Lux HD, Nagy K: Single channel Ca2+ currents in Helix pomatia neurons. Pflugers Arch. 391: 252–254, 1981.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown AM, Camerer H, Kunze DL, Lux HD: Similarity of unitary Ca currents in three different species. Nature 299: 156–158, 1982.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavalié A, Ochi R, Pelzer D, Trautwein W: Elementary currents through Ca2+ channels in guinea pig myocytes. Pflügers Arch. 398: 284–297, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Lux HD, Brown AM: Single channel studies on inactivation of calcium currents. Science 225: 432–434, 1984.PubMedCrossRefGoogle Scholar
  19. 19.
    Lux HD, Brown AM: Patch and whole cell calcium currents recorded simultaneously in snail neurons. J. Gen. Physiol. 83: 727–750, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Brown AM, Lux HD, Wilson DL: Activation and inactivation of single calcium channels in snail neurons. J. Gen. Physiol. 83: 751–769, 1984.PubMedCrossRefGoogle Scholar
  21. 21.
    Lux HD: Observations on single Ca channels. In: B Sakmann and E Neher (eds) Single-channel recording. Plenum Publ. Corp., New York, 1983, pp 437-449.Google Scholar
  22. 22.
    Colquhoun D, Sigworth FJ: Fitting and statistical analysis of single-channel recordings. In: B Sakmann and E Neher (eds) Single-channel recording. Plenum Publ. Corp., New York, 1983, pp 191–263.Google Scholar
  23. 23.
    Aldrich RW, Corey DP, Stevens CF: A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306: 436–441, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Fenwick EM, Marty A, Neher E: Sodium and calcium channels in bovine chromaffin cells. J. Physiol. (Lond.) 331: 599–635, 1982.PubMedGoogle Scholar
  25. 25.
    Hagiwara S, Ohmori H: Studies of single calcium channel currents in rat clonal pituitary cells. J. Physiol. (Lond.) 336: 649–661, 1983.PubMedGoogle Scholar
  26. 26.
    Brown AM, Morimoto K, Tsuda Y, Wilson D: Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa. J. Physiol. (Lond.) 320: 193–218, 1981.PubMedGoogle Scholar
  27. 27.
    Chandler, WK, Meves H: Sodium and potassium currents in squid axons perfused with fluoride solutions. J. Physiol. (Lond.) 211: 623–652, 1970.PubMedGoogle Scholar
  28. 28.
    Hagiwara S, Naka K: The initiation of spike potential in barnacle muscle fibers under low intracellular Ca2+. J. Gen. Physiol. 48: 141–162, 1964.PubMedCrossRefGoogle Scholar
  29. 29.
    Kostyuk PG, Krishtal OA, Sakhovalov Yu: Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J. Physiol. (Lond.) 270: 545–568, 1977.PubMedGoogle Scholar
  30. 30.
    Carbone E, Lux HD: A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310: 501–502, 1984.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • H. D. Lux
  • A. M. Brown

There are no affiliations available

Personalised recommendations