Calcium Independent Quantal Transmitter Release at the Neuromuscular Junction

  • S. Thesleff
  • M. T. Lupa
Part of the Topics in the Neurosciences book series (TNSC, volume 1)


It is generally accepted that transmitter release at the neuromuscular junction is a calcium-requiring process, calcium ions being necessary for depolarization-transmitter secretion coupling to occur (29). Nerve impulse-evoked multi-quantal release of acetylcholine (ACh), giving rise to the end-plate potential (e.p.p.), as well as the spontaneous quantal secretion of ACh, causing the miniature end-plate potentials (, depend on extra- and intracellular calcium concentrations (see 20; 28; 40).


Botulinum Toxin Neuromuscular Junction Extensor Digitorum Longus Transmitter Release Intracellular Calcium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett MR, McLachlan EM, Taylor RS: The formation of synapses in re-innervated mammalian striated muscle. J Physiol 233:481–500, 1973.PubMedGoogle Scholar
  2. 2.
    Benoit PH, Audibert-Benoit M, Peyrot M: Importance des effets presynap-tiques dans le blockage de la jonction neuro-musculaire de grenouille par substitution du lithium ou sodium dans le milieu de survie. Archs ital Biol 111:323–335, 1973.Google Scholar
  3. 3.
    Bevan S: Sub-miniature end-plate potentials at untreated frog neuro-muscular junctions. J Physiol 258:145–155, 1976.PubMedGoogle Scholar
  4. 4.
    Bevan S, Grampp W, Miledi R: Properties of spontaneous potentials at denervated motor endplates of the frog. Proc R Soc Lond B 194:195–210, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Boroff DA, del Castillo J, Evory WH, Steinhardt RA: Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J Physiol 240:227–253, 1974.PubMedGoogle Scholar
  6. 6.
    Carbonetto S: Neuromuscular transmission in dystrophic mice. J Neuro-physiol 40:836–843, 1977.Google Scholar
  7. 7.
    Colméus C, Gomez S, Molgó J, Thesleff S: Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botu-linum toxin poisoned mammalian neuromuscular junctions. Proc R Soc Lond B 215:63–74, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Cull-Candy SG, Lundh H, Thesleff S: Effects of botulinum toxin on neuromuscular transmission in the rat. J Physiol 260:177–203, 1976.PubMedGoogle Scholar
  9. 9.
    Cull-Candy SG, Fohlman J, Gustavsson D, Lüllmann-Rauch R, Thesleff S: The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience 1:175–180, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Ding R, Jansen JKS, Laing NG, Tönnesen H: The innervation of skeletal muscles in chickens curarized during early development. J Neurocytol 12:887–919, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Duchen LW: Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: Differences between fast and slow muscles. J Neurol Neurosurg Psychiat 33:40–54, 1970.PubMedCrossRefGoogle Scholar
  12. 12.
    Gage PW: Generation of end-plate potentials. Physiol Revs 56:177–247, 1976.Google Scholar
  13. 13.
    Gomez S, Duchen LW, Homsey S: Effects of X-irradiation on axonal sprouting induced by botulinum toxin. Neuroscience 7:1023–1036, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Harris AJ, Miledi R: The effect of type D botulinum toxin on frog neuromuscular junctions. J Physiol 217:497–515, 1971.PubMedGoogle Scholar
  15. 15.
    Heinonen E, Jansson S-E, Tolppanen E-M: Independent release of supra-normal acetylcholine quanta at the rat neuromuscular junction. Neuroscience 7:21–24, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Heuser JE: A possible origin of the “giant” spontaneous potentials that occur after prolonged transmitter release at frog neuromuscular junction. J Physiol 239:106P–108P, 1974.PubMedGoogle Scholar
  17. 17.
    Hume RI, Robe LW, Fischbach GD: Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature 305:632–634, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Ito Y, Miledi R: The effect of calcium-ionophores on acetylcholine release from Schwann cells. Proc R Soc Lond B 196:51–58, 1977.PubMedCrossRefGoogle Scholar
  19. 19.
    Jansen JKS, van Essen D: A population of miniature end-plate potentials not evoked by nerve stimuli. J Physiol 258:103P, 1976.PubMedGoogle Scholar
  20. 20.
    Katz B: The release of neural transmitter substances. Liverpool University Press, 1969.Google Scholar
  21. 21.
    Katz B, Miledi R: Spontaneous and evoked activity of motor nerve endings in calcium ringer. J Physiol 203:689–706, 1969.PubMedGoogle Scholar
  22. 22.
    Katz B, Miledi R: Transmitter leakage from motor nerve endings. Proc R Soc Lond B 196:59–72, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Kelly SS, Robbins N: Bimodal miniature and evoked end-plate potentials in adult mouse neuromuscular junctions. J Physiol 346:353–363, 1984.PubMedGoogle Scholar
  24. 24.
    Kim YI, Lömo T, Lupa MT, Thesleff S: Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol in press, 1984.Google Scholar
  25. 25.
    Kriebel ME, Gross CE: Multimodal distribution of frog miniature end—plate potentials in adult, denervated and tadpole leg muscle. J Gen Physiol 64:85–103, 1974.PubMedCrossRefGoogle Scholar
  26. 26.
    Kriebel ME, Llados F, Matteson DR: Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: Evidence for synchronous release. J Physiol 262:553–581, 1976.PubMedGoogle Scholar
  27. 27.
    Liley AW: Spontaneous release of transmitter substance in multiquan-tal units. J Physiol 136:595–605, 1957.PubMedGoogle Scholar
  28. 28.
    Llinas R, Heuser JR: Depolarization-release coupling systems in neurons. Neurosci Res Prog Bull 15:557–687, 1977.Google Scholar
  29. 29.
    Locke FS: Notiz über den Einfluss physiologisches Kochsaltz Lösung auf die Erregbarkeit von Muskel und Nerf. Zbl Physiol 8:166, 1894.Google Scholar
  30. 30.
    Lundh H, Leander S, Thesleff S: Antagonism of the paralysis produced by botulinum toxin in the rat. J Neurol Sci 32:29–43, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Lömo T, Westgaard RH: Further studies on the control of ACh sensitivity by muscle activity in the rat. J Physiol 258:603–626, 1975.Google Scholar
  32. 32.
    Molgó J, Gomez S, Polak RL, Thesleff S: Giant miniature endplate potentials induced by 4-aminoquinoline. Acta physiol scand 115:201–207, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Molgó J, Thesleff S: 4-aminoquinoline-induced “giant” miniature end-plate potentials at mammalian neuromuscular junctions. Proc R Soc Lond B 214:229–247, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Pécot-Dechavassine M: Effets conjugués du pH et des cations divalents sur la libération spontanée d’acetylcholine au niveau de la plaque motrice de la grenouille. CR Acad Sci Paris D 271:674–677, 1970.Google Scholar
  35. 35.
    Pécot-Dechavassine M: Action of vinblastine on the spontaneous release of acetylcholine at the frog neuromuscular junction. J Physiol 261:31–48, 1976.PubMedGoogle Scholar
  36. 36.
    Pécot-Dechavassine M, Couteaux R: Recherches sur la signification physiologique et structurale des potentiels miniature d’amplitude anormale observés au niveau de la jonction neuromusculaire de la grenouille dans diverses conditions expérimentales. J Physiol Paris 63: 138A, 1971.PubMedGoogle Scholar
  37. 37.
    Pécot-Dechavassine M, Couteaux R: Potentiels miniatures d’amplitude anormale obtenus dans des conditions expérimentales et changements concomitants des structures présynaptiques. CR Acad Sei Paris D 275: 983–986, 1972.Google Scholar
  38. 38.
    Pécot-Dechavassine M, Couteaux R: Modifications structurales des terminaisons motrices de muscle de grenouille souris à l’action de la vinblastine. C r hebd Séanc Acad Sci Paris 280:1099–1101, 1975.Google Scholar
  39. 39.
    Pécot-Dechavassine M, Molgó J: Attempt to detect a morphological correlate for the “giant” miniature end-plate potentials induced by 4—aminoquinoline. Biol Cell 46:93–96, 1982.Google Scholar
  40. 40.
    Rahamimoff R: The role of calcium in transmitter release at the neuromuscular junction. In: S Thesleff (ed) Motor innervation of muscle. Academic Press, 1976.Google Scholar
  41. 41.
    Sellin LC, Thesleff S: Pre-and postsynaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol 317:487–495, 1981.PubMedGoogle Scholar
  42. 42.
    Sellin LC, Thesleff S, DasGupta BR: Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta physiol scand 119:127–133, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Spitzer N: Miniature end-plate potentials at mammalian neuromuscular junctions poisoned by botulinum toxin. Nature New Biol 237:26–27, 1972.PubMedCrossRefGoogle Scholar
  44. 44.
    Tauc L: Nonvesicular release of neurotransmitter. Physiol Revs 62: 857–893, 1982.Google Scholar
  45. 45.
    Thesleff S: Supersensitivity of skeletal muscle produced by botulinum toxin. J Physiol 151:598–607, 1960.PubMedGoogle Scholar
  46. 46.
    Thesleff S, Molgó J: Commentary. A new type of transmitter release at the neuromuscular junction. Neuroscience 9:1–8, 1983.PubMedCrossRefGoogle Scholar
  47. 47.
    Thesleff S, Molgó J, Lundh H: Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous transmitter release at the rat neuromuscular junction. Brain Res 264:89–97, 1983.PubMedCrossRefGoogle Scholar
  48. 48.
    Tremblay JP, Laurie RE, Colonnier M: Is the MEPP due to the release of one vesicle or to the simultaneous release of several vesicles at one active zone? Brain Res Revs 6:299–314, 1983.CrossRefGoogle Scholar
  49. 49.
    Turkanis AA: Some effects of vinblastine and colchicine on neuromus-cular transmission. Brain Res 54:324–329, 1973.PubMedCrossRefGoogle Scholar
  50. 50.
    Usherwood PNR, Cochrane DG, Rees D: Changes in structural, physiological and pharmacological properties of insect excitatory nerve—muscle synapses after motor nerve section. Nature 218:589–591, 1968.PubMedCrossRefGoogle Scholar
  51. 51.
    Wernig A, Stirner H: Quantum amplitude distributions point to functional unity of the synaptic “active zone”. Nature 269:820–822, 1977.PubMedCrossRefGoogle Scholar
  52. 52.
    Young SH, Poo M: Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305:634–637, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1986

Authors and Affiliations

  • S. Thesleff
    • 1
  • M. T. Lupa
    • 1
  1. 1.Department of PharmacologyUniversity of LundLundSweden

Personalised recommendations