Skip to main content

Fabrication Processes

  • Chapter
Digital CMOS Circuit Design

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 16))

  • 338 Accesses

Abstract

CMOS processes are generally more complex and expensive than nMOS processes because extra steps and extra masks are required in the fabrication process. Although many different processes are available, all the CMOS processes fall into either one of the two following classes:

  • Bulk processes: the substrate is doped silicon. Examples of bulk processes are p-well, n-well, and twin-tub. Newer bulk processes [18,32] can also have bipolar transistors on the same wafer, which has positive effects on driving capability — which is not as high in MOS as in bipolar technology — and when digital/analog applications — such as sense amplifiers in memory design [17] — are considered.

  • Silicon-on-insulator (SOI) processes: the substrate is an insulator, such as sapphire (“silicon-on-sapphire,” SOS) or silicon dioxide (SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.R. and R.J. Sokel. Neutron Irradiation for Prevention of Latch-up in MOS Integrated Circuits. IEEE Trans. on Nuclear Science NS-26(6): 5069–5073, 1979.

    Article  Google Scholar 

  2. Anagnostopoulos, C.N. et al.. Latch-Up and image Crosstalk Suppression by Internal Gettering. IEEE Journal of Solid State Circuits SC-19(1):91–97, February, 1984.

    Article  Google Scholar 

  3. Appels, J.A. and M.M. Paffen. Local Oxidation of Silicon. Philips Res. Reports 26: 157–165, 1971.

    Google Scholar 

  4. Brandt, B.B.M., W. Steinmaier and A.J. Strachan. LOCMOS, a New Technology for Complementary MOS Circuits. Philips Technical Review 34 (1): 19–23, 1974.

    Google Scholar 

  5. Chatterjee, P. Device Design Issues for Deep Submicron VLSI. In Proc. of the 1985 International Symposium on VLSI Technology, Systems and Applications — Taiwan, pages 221–226. May, 1985.

    Google Scholar 

  6. Chen, M.-L., B.C. Leung and B. Lalevic. A High-performance CMOS/SOS Device with a Gradually Doped Source-Drain Extension Structure. IEEE Electrons Device Letters EDL-4(10):372–374, October, 1983.

    Google Scholar 

  7. Elmasry, M.I. Digital Bipolar Integrated Circuits. John Wiley & Sons, 1983.

    Google Scholar 

  8. Estreich, D.B., A. Ochoa and R.W. Dutton. An Analysis of Latch-up Prevention in CMOS IC’s Using an Epitaxial Buried Layer Process. In IEDM Tech. Dig.. December, 1978.

    Google Scholar 

  9. Genda, J.H. An Improved Model for Latch-up in CMOS Structures. In Proc. of the 1983 International Symposium on VLSI, Technology, Systems and Applications — Taiwan, pages 99–103. April, 1983.

    Google Scholar 

  10. Hashimoto, K. et al.. Counter-doped Well Structure for Scaled CMOS. In IEDM Tech. Dig.. December, 1982.

    Google Scholar 

  11. Isobe, M. et al.. An 18 ns CMOS/SOS 4K Static RAM. IEEE Journal of Solid State Circuits SC-16(5):460–465, October, 1981.

    Article  Google Scholar 

  12. Lam, H.W. Silicon on Insulating Substrates — Recent Advances. In IEDM Tech. Dig., pages 348–351. 1983.

    Google Scholar 

  13. Lim, H.K. and J.G. Fossum. A Charge-Based Large-Signal Model for Thin-Film SOI MOSFET’s. IEEE Journal of Solid State Circuits SC-20(1):366–377, February, 1985.

    Google Scholar 

  14. Manoliu et al. High-Density and Reduced Latchup Susceptibility CMOS Technology for VLSI. IEEE Electron Device Letters EDL-4(7):240–245, July, 1983.

    Google Scholar 

  15. Mayer, D.C. et al. A Short-Channel CMOS/SOS Technology in Recrystallized 0.3-μm-Thick Silicon-on-Sapphire Films. IEEE Electron Device Letters EDL-5(5):156–158, May, 1984.

    Article  Google Scholar 

  16. Mead, C. and L. Conway. Introduction To VLSI Systems. Addison-Wesley Publishing Co., Reading, Mass., 1980.

    Google Scholar 

  17. Miyamoto, J.I. et al.. A High-Speed 64K CMOS RAM with Bipolar Sense Amplifiers. IEEE Journal of Solid-State Circuits SC-19(5):557–563, October, 1984.

    Article  MathSciNet  Google Scholar 

  18. Momose, H. et al.. 1.0μm n-Well CMOS/Bipolar Technology. IEEE Journal of Solid State Circuits SC-20(1):137–143, February, 1985.

    Article  Google Scholar 

  19. Ong, DeW.G. Modern MOS Technology. McGraw-Hill Book Co., 1984.

    Google Scholar 

  20. Parrillo, L.C. et al.. Twin-Tub CMOS — A Technology for VLSI Circuits. In IEEE Int. Electron Device Meeting. 1980.

    Google Scholar 

  21. Pattanayak, D.N. et al. Switching Conditions for CMOS Latch-Up Path with Shunt Resistances. IEEE Electron Device Letters EDL-4(4):116–119, April, 1983.

    Article  Google Scholar 

  22. Payne, R.S., W.N. Grant and W.J. Bertram. Elimination of Latch Up in Bulk CMOS. In Proc. of the international Electron Device Meeting, pages 248–251. IEEE, 1980.

    Google Scholar 

  23. Pinto, M.R. and R.W. Dutton. Accurate Trigger Condition Analysis for CMOS Latchup. IEEE Electron Device Letters EDL-6(2):100–102, February, 1985.

    Article  Google Scholar 

  24. Preckshot, N.E. et al.. Design Methodology of a 1.2-μm Double-Level-Metal CMOS Technology. IEEE Journal of Solid State Circuits SC-19(1):81–90, February, 1984.

    Article  Google Scholar 

  25. Soden, J.M., H.D. Stewart and R.A. Pastorek. ESD Evaluation of Radiation-hardened, High Reliability CMOS and MNOS ICs. In Proc. EOS/ESD Symposium, pages 134–146. Reliability Analysis Center, September, 1983.

    Google Scholar 

  26. Sugino, M., L.A. Akers and M.E. Rebeschini. Latchup-Free Schottky-Barrier CMOS. IEEE Trans, on Electron Devices: 110–118, 1983.

    Google Scholar 

  27. Sze, S.M. Physics of Semiconductor Devices. John Wiley & Sons, New York, 1969.

    Google Scholar 

  28. Sze, S.M. (ed.). VLSI Technology. McGraw-Hill Publishing Co., 1983.

    Google Scholar 

  29. Tanaka, S. et al.. A Subnanosecond 8K-Gate CMOS/SOS Gate Array. IEEE Journal on Solid State Circuits SC-19(5):657–662, October, 1984.

    Article  Google Scholar 

  30. Troutman, R.R. and H.P. Zappe. A Transient Analysis of Latchup in Bulk CMOS. IEEE Trans, on Electron Devices ED-30(2):170–179, February, 1983.

    Article  Google Scholar 

  31. Vittoz, E.A. MOS Transistors Operated in the Lateral Bipolar Mode and Their Application in CMOS Technology. IEEE Journal of Solid State Circuits SC-18(3):273–279, June, 1983.

    Article  Google Scholar 

  32. Walezyk, I. and J. Rubinstein. A Merged CMOS/Bipolar VLSI Process. In IEDM Technical Digest. December, 1983.

    Google Scholar 

  33. White, M.H. Characterization of CMOS Devices for VLSI. IEEE Journal of Solid-State Circuits SC-17(2):208–214, April, 1982.

    Article  Google Scholar 

  34. Wieder, A.W., C. Werner and J. Harter. Design Model for Bulk CMOS Scaling Enabling Accurate Latchup Prediction. IEEE Trans. on Electron Devices ED-30(3):240–245, March, 1983.

    Article  Google Scholar 

  35. Wu, C.Y. and M.Z. Lin. The Modified Bimos Dynamic RAM Cell Using LOCOS and N-Well Technologies. In Proc. of the International Symposium on VLSI Technology, Systems and Applications, pages 267–269. March, 1983.

    Google Scholar 

  36. Yamaguchi, T. et al.. Process and Device Performance of 1 μm-Channel n-Well CMOS Technology. IEEE Journal of Solid State Circuits SC-19(1):71–80, February, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Kluwer Academic Publishers

About this chapter

Cite this chapter

Annaratone, M. (1986). Fabrication Processes. In: Digital CMOS Circuit Design. The Kluwer International Series in Engineering and Computer Science, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2285-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2285-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9409-2

  • Online ISBN: 978-1-4613-2285-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics