Skip to main content

Finite-Data Algorithms for Approximate Stochastic Realization

  • Chapter
Book cover Modelling and Application of Stochastic Processes

Abstract

This chapter deals with the problem of constructing a state-space model for a stochastic process from a finite number of estimated covariance lags. The approach is to first obtain a high-order model which exactly matches the estimated covariance sequence, and then use balanced model reduction techniques to obtain a lower order model which approximates the given sequence. It is shown that balanced models can be obtained from a realization algorithm which uses an infinite covariance sequence. Scaling ideas are then introduced so that balanced realizations can be obtained from finite covariance sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Faurre, In: System Identification: Advances and Case Studies (Eds. R.K. Mehra and D.G. Lainiotis), Academic Press, New York, 1976, pp. 1–25.

    Chapter  Google Scholar 

  2. R.J. Vaccaro and B.W. Dickinson, In:Proc. 19th Annual Asilomar Conf., Pacific Grove, CA, November, 1985.

    Google Scholar 

  3. M. Gevers and W.R.E Wouters, Journal A vol. 19, pp. 90–110, 1978.

    Google Scholar 

  4. B.D.O. Anderson and J.B. Moore, Optimal Filtering, Prentice-Hall, Englewood- Cliffs, 1979.

    MATH  Google Scholar 

  5. H. Akaike, IEEE Trans. Automat. Contr. vol. AC-19, pp. 667–674, 1974.

    Google Scholar 

  6. B.L. Ho and R.E. Kaiman, In: Proc. 3rd Aller ton ConfMonticello, Illinois, pp.449- 459, 1965.

    Google Scholar 

  7. J. Rissanen, SIAM J. Contr. vol. 9, pp. 420–430, 1971.

    Article  MathSciNet  Google Scholar 

  8. R.E. Kaiman, In: Acta Polytechnica Scandinavica, Mathematics and Computer Science Series No. 31, pp. 9–32, 1979.

    Google Scholar 

  9. B.C. MooreIEEE Trans. Automat. Contr., vol. AC-26, pp. 17–32, 1981.

    Article  Google Scholar 

  10. L. Pernebo and L.M. Silverman, IEEE Trans. Automat. Contr. vol. AC-27, pp. 382–387, 1982.

    Google Scholar 

  11. R.J. Vaccaro, Ph.D. Dissertation, Princeton University, Princeton, NJ, 1983.

    Google Scholar 

  12. K.V. Fernando and H. Nicholson, IEEE Trans. Automat. Contr. vol. AC-28, pp. 228–231, 1983.

    Article  MathSciNet  Google Scholar 

  13. V.C. Klema and A.J. LaubIEEE Trans. Automat. Contr. vol. AC-25, pp. 164–176, 1980.

    Google Scholar 

  14. K.S. Arun, D.V. Bhaskar Rao, and S.Y. Kung, In:Proc. 22nd IEEE Conf. Decision Contr. San Antonio, TX, pp. 1353–1355, 1983.

    Google Scholar 

  15. K.S. Arun and S.Y. Kung, In: Proc. IEEE Spectral Estimation Workshop II pp. 161–167, 1983.

    Google Scholar 

  16. S. Fujishige, S. Nagai, and Y. Sawaragi, Int. J. Contr. vol. 22, pp. 807–819, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.J. Vaccaro, IEEE Trans. Automat. Contr. vol. AC-30, pp. 921–923, 1985.

    Article  MathSciNet  Google Scholar 

  18. A.J. Laub, In: Proc. 1980 JACC FA8-E, 1980.

    Google Scholar 

  19. U.B. Desai and D. Pal, In:Proc. 16th Annual Conf. Inform. Sei., Syst. Princeton Univ., Princeton, NJ, 1982; also in Proc. 22nd IEEE Conf. Decision, Contr. Orlando, FL, 1982.

    Google Scholar 

  20. U.B. Desai and D. Pal, IEEE Trans. Automat. Contr. vol. AC-29, pp. 1097–1100, 1984.

    Article  MathSciNet  Google Scholar 

  21. J.A. Ramos and E.I. Verriest, In: Proc. American Contr. Conf. San Diego, CA, pp. 150–155, 1984.

    Google Scholar 

  22. C.I. Byrnes and A. Lindquist, Syst. Contr. Letters vol. 2, pp. 99–105, 1982. 23

    Article  MathSciNet  MATH  Google Scholar 

  23. R.J. Vaccaro, IEEE Proceedings (Letters) to appear, 1986.

    Google Scholar 

  24. Y. Baram, IEEE Trans. Automat. Contr. vol. AC-26, pp. 1225–1231, 1981.

    Article  MathSciNet  Google Scholar 

  25. G.H. Golub, V.C. Klema, and G.W. Stewart, Stanford Univ. Tech. Rep. STAN-CS-76-559, Computer Sei. Dept., Stanford Univ., Palo Alto, CA, 1976.

    Google Scholar 

  26. H.P. Zeiger and A.J. McEwenIEEE Trans. Automat. Contr. p. 153, 1974.

    Google Scholar 

  27. S.Y. Kung, In: Proc. 12th Asilomar Conf. Pacific Grove, CA, pp. 705–714, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Vaccaro, R.J. (1986). Finite-Data Algorithms for Approximate Stochastic Realization. In: Desai, U.B. (eds) Modelling and Application of Stochastic Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2267-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2267-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9400-9

  • Online ISBN: 978-1-4613-2267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics