Skip to main content

Metal-Catalyzed Reactions of Organic Compounds

  • Chapter
  • 788 Accesses

Part of the book series: Basic Symposium Series ((IFTBSS))

Abstract

It is the purpose of this chapter to describe the various ways by which metal ions and metal complexes may catalyze reactions of organic compounds. Descriptions of reaction pathways and the mechanisms involved will be illustrated by examples of organic compounds present in foods or closely related compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabori, S., Otani, T.T., Marshall, R., Winitz, M., and Greenstein, J.P. 1959. Synthesis and resolution of DL-serine. Arch. Biochem. Biophys. 83, 1–9.

    Article  CAS  Google Scholar 

  • Anbar, M. 1965. Oxidation or reduction of ligands by metal ions in unstable states of oxidation. Adv. Chem. Ser. 49, 129–135.

    Google Scholar 

  • Anbar, M., Munoz, R., and Rona, P.J. 1963. Metal ion-sensitized radiolysis of ethylenediamine in dilute aqueous solutions. J. Phys. Chem. 67, 2708–2714.

    Article  Google Scholar 

  • Brodie, B.B., Axelrod, J., Shore, P.A., and Udenfriend, S. 1954. Products formed by reaction of substrates with ascorbic acid, ferrous ion and oxygen. J. Biol. Chem. 208, 741–750.

    CAS  Google Scholar 

  • Buckingham, D.A., and Marzilli, L.G. 1967. Hydrolysis of N-terminal peptide bonds and amino acid derivatives by the β-hydroxoaquotriethy-lenetetraminecobalt(III) ion. J. Am. Chem. Soc. 89, 1082–1087.

    Article  CAS  Google Scholar 

  • Collman, J.P. 1963. The chemistry of quasiaromatic metal chelates. Adv. Chem. Ser. 37, 78–98.

    Article  CAS  Google Scholar 

  • Collman, J.P., and Buckingham, D.A. 1963. Hydrolytic cleavage of N-terminal peptide bonds by a cobalt chelate. J. Am. Chem. Soc. 85, 3039–3040.

    Article  CAS  Google Scholar 

  • Collman, J.P., Moss, R.A., Goldby, S.D., and Trahanovsky, W.S. 1960. Aromatic behavior of metal acetylacetonates. Electrophilic substitution of the chelate ring. Chem. Ind. (London) pp. 1213–1214.

    Google Scholar 

  • Collman, J.P., Moss, R.A., Maltz, H., and Heindel, C.C. 1961. The reaction of metal chelates. I. Halogenation of metal chelates of 1,3-diketones. J. Am. Chem. Soc. 83, 531–534.

    Article  CAS  Google Scholar 

  • Collman, J.P., Marshall, R.L., Young, W.L., III, and Goldby, S.D. 1962. Reactions of metal chelates. III. Nitration and formylation of metal acetylacetonates. Inorg. Chem. 1, 704–710.

    Article  CAS  Google Scholar 

  • Courtney, R.C., Gustafson, R.L., Westerback, S., Hyytiainen, H., Cha-Berek, S.J., Jr., and Martell, A.E. 1957. Metal chelate compounds as catalysts in the hydrolysis of isopropylmethylphosphonofluoridate and diisopropyl- phosphorofluoridate. J. Am. Chem. Soc. 79, 3030–3036.

    Article  CAS  Google Scholar 

  • Djordjevic, C., Lewis, J., and Nyholm, R.S. 1959. Reactivity of coordinated acetylacetone. Chem. Ind. (London) p. 122.

    Google Scholar 

  • Duke, F.R. 1947. The theory and kinetics of specific oxidation. I. The trivalent manganese-oxalate reaction. J. Am. Chem. Soc. 69, 2885–2888.

    Article  CAS  Google Scholar 

  • Duke, F.R., and Bremer, R.F. 1951. The theory and kinetics of specific oxidation. IV. The cerate 2,3-butanediol reaction in perchlorate solution. J. Am. Chem. Soc. 73, 5179–5181.

    Article  CAS  Google Scholar 

  • Duke, F.R., and Forist, A.A. 1949. The theory and kinetics of specific oxidation. III. The cerate 2,3-butanediol reaction in nitric acid solution. J. Am. Chem. Soc. 71, 2790–2792.

    Article  CAS  Google Scholar 

  • Gelles, E., and Hay, R.W. 1958. The interaction of transition metal ions with oxaloacetic acid. I. The role of chelate compounds in the decarboxylation. J. Chem. Soc. pp. 3673–3683.

    Google Scholar 

  • Gelles, E., and Salama, A. 1958A. The interaction of transition metal ions with oxaloacetic acid. II. Thermodynamics of chelation. J. Chem. Soc. pp. 3683–3688.

    Google Scholar 

  • Gelles, E., and Salama, A. 1958B. The interaction of transition metal ions with oxaloacetic acid. III. Kinetics of the catalyzed decarboxylation. J. Chem. Soc. pp. 3689–3693.

    Google Scholar 

  • Grinstead, R.R. 1960. Oxidation of salicylate by the model peroxidase catalyst iron-ethylenediaminetetraacetato-iron(III) acid. J. Am. Chem. Soc. 82, 3472–3476.

    Article  CAS  Google Scholar 

  • Grinstead, R.R. 1964. Metal-catalyzed oxidation of 3,5-di-i-butylpyrocatechol and its significance in the mechanism of pyrocatechase action. Biochemistry 3, 1308–1314.

    Article  CAS  Google Scholar 

  • Guilbault, G.G., and McCurdy, W.J. 1963. Mechanism and kinetics of the oxidation of glycerol by cerium(IV) in sulfuric and perchloric acids. J. Phys. Chem. 67, 283–285.

    Article  CAS  Google Scholar 

  • Gustafson, R.L., and Martell, A.E. 1962. A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropylmethylphosphonofluoridate (Sarin). J. Am. Chem. Soc. 84, 2309–2316.

    Article  CAS  Google Scholar 

  • Gustafson, R.L., Chaberek, S.J., JR., and Martell, A.E. 1963. A kinetic study of the copper(II) catalyzed hydrolysis of diisopropylphosphorofluoridate. J. Am. Chem. Soc. 85, 598–601.

    Article  CAS  Google Scholar 

  • Hamilton, G.A. 1969. Mechanisms of two- and four-electron oxidations catalyzed by some metalloenzymes. Adv. Enzymol. Relat. Areas Mol. Biochem. 32, 55–96.

    CAS  Google Scholar 

  • Hamilton, G.A., and Revesz A. 1966. Oxidation by molecular oxygen. IV. A possible model reaction for some amine oxidases. J. Am. Chem. Soc. 88, 2069–2070.

    Article  CAS  Google Scholar 

  • Hamilton, G.A., Friedman, J.P., and Campbell, P.M. 1966A. The hydroxylation of anisole by hydrogen peroxide in the presence of catalytic amounts of ferric ion and catechol. Scope, requirements and kinetic studies. J. Am. Chem. Soc. 88, 5266–5268.

    Article  CAS  Google Scholar 

  • Hamilton, G.A., Friedman, J.F., and Campbell, P.H. 1966B. The hydroxylation of aromatic compounds by hydrogen peroxide in the presence of catalytic amounts of ferric ion and catechol. Product studies, mechanism and relation to some enzymic reactions. J. Am. Chem. Soc. 88, 5269–5272.

    Article  CAS  Google Scholar 

  • Harris, W.R., and Martell A.E. 1980A. Irreversible redox rearrangement of dioxygen complexes. I. Selective oxidation of dipeptides coordinated to cobalt(II). J. Coord. Chem. 10, 107–113.

    Article  CAS  Google Scholar 

  • Harris, W.R., and Martell, A.E. 1980B. Selected oxidation with dioxygen complexes as intermediates. I. Oxidation of coordinated dipeptide ligands. J. Mol. Catal. 7, 99–105.

    Article  Google Scholar 

  • Harris, W.R., Bess, R.C., Martell, A.E., and Ridgway, T.H. 1977. The irreversible redox rearrangement of cobalt oxygen complexes of dipeptides. J. Am. Chem. Soc. 99, 2958–2965.

    Article  CAS  Google Scholar 

  • Haruta M., and Martell, A.E. Submitted, 1985.

    Google Scholar 

  • Hay, R.W. 1965. Some reactions of coordinated ligands containing oxygen and nitrogen donors. J. Chem. Educ. 42, 413–417.

    Article  CAS  Google Scholar 

  • Hopgood, D., and Angelici, R.J. 1968A. Equilibrium and stereochemical studies of the interaction of amino acids and their esters with divalent metal nitrilo-triacetate complexes. J. Am. Chem. Soc. 90, 2508–2513.

    Article  CAS  Google Scholar 

  • Hopgood, D., and Angelici, R.J. 1968B. Metal complex catalysis of the base hydrolysis of various amino acid esters coordinated to the complex of nitrilotri-acetatic acid with copper(II). J. Am. Chem. Soc. 90, 2514–2517.

    Article  Google Scholar 

  • Kimura, E., Young, S., and Collman, J.P. 1970. Cleavage of amino acid esters and peptides with hydroxoaquo (2,2,2’-triaminoethylamine)cobalt(III) ion. In-org. Chem. 9, 1183–1191.

    CAS  Google Scholar 

  • Kluiber, R.W. 1960. Inner complexes. II. Ring bromination of β-dicarbonyl chelates. J. Am. Chem. Soc. 82, 4839–4842.

    Article  CAS  Google Scholar 

  • Martell, A.E. 1963. Metal chelate compounds as acid catalysts in solvolysis re-actions. Adv. Chem. Ser. 37, 161–173.

    Article  CAS  Google Scholar 

  • Martell, A.E. 1982. Reaction pathways and mechanisms of pyridoxal catalysis. Adv. Enzymol. 53, 163–199.

    CAS  Google Scholar 

  • Martell, A.E., Gustafson, R.L., and Chaberek, S.J., Jr. 1957. Metal chelate compounds in homogeneous aqueous catalysis. Adv. Catal. 9, 319–329.

    Article  Google Scholar 

  • Matsuura, T., Watanabe, K., and Nishinaga, A. 1970. Autoxidation of 4-alkyl-2,6-di-i-butylphenols with di-(3-salicylideneaminopropyl)aminecobalt(II) catalyst. J. Chem. Soc., Chem. Commun. pp. 163–164.

    Google Scholar 

  • Mont, G.E., and Martell, A.E. 1966. Equilibria involving the formation, hydrolysis, and olation of oxovanadium(IV) chelates in aqueous solution. J. Am. Chem. Soc. 88, 3187–3193.

    Article  Google Scholar 

  • Murakami, Y., and Martell, A.E. 1964. Kinetic studies of the catalytic hydrolysis of l, 3-dicarboxyphenyl-2-phosphate and l-methoxycarbonyl-3-carboxy-phenyl-2-phosphate. J. Am. Chem. Soc. 85, 2119–2129.

    Article  Google Scholar 

  • Nishinaga, A. 1975. Oxygenation of 3-substituted indoles catalyzed by Co(II)-Schifif base complexes. A model catalytic oxygenation for tryptophane 2,3-dioxygenase. Chem. Lett. pp. 273–276.

    Google Scholar 

  • Nishinaga, A. 1977. Reactions of cobalt-oxygen complexes with organic molecules. In Biochemical and Medical Aspects of Active Oxygen. O. Hayaishi (Editor). University Park Press, Baltimore, MD.

    Google Scholar 

  • Nishinaga, A., Watanabe, K., and Matsuura, T. 1974. Oxygenation of 2,6- di-i-butylphenols catalyzed by colbalt(II)-Schiff base complexes. Tetrahedron Lett. 14, 1291–1294.

    Article  Google Scholar 

  • Nishinaga, A., Nishizawa, K., Tomita, H., and Matsuura, T. 1977. Novel peroxycobalt(III) complexes derived from 4-aryl-2,6-di-ter£-butylphenols. A model intermediate of dioxygenase reaction. J. Am. Chem. Soc. 99, 1287–1288.

    Article  CAS  Google Scholar 

  • Nishinaga, A., Tomita, H., Nishizawa, K., and Matsuura, T. 1981. Regio-selective formation of peroxyquinolatocobalt(III) complexes in the oxygenation of 2,6-di-i-butylphenols with cobalt(II)-SchifT base complexes. J. Chem. Soc., Dalton Trans, pp. 1504–1514.

    Google Scholar 

  • Pederson, K.J. 1948A. Cupric ion catalysis in the bromination of ethylacetoacetate. Acta Chem. Scand. 2, 252–259.

    Article  Google Scholar 

  • Pederson, K.J. 1948B. Catalysis by certain metal ions in the bromation of 2-carbethoxycyclopentanone. Acta Chem. Scand. 2, 385–399.

    Article  Google Scholar 

  • Raleigh, C.J., and MARTELL, A.E. 1984. Autoxidation pathways of Co(II) complexes of pyridyl-containing pentamines involving dioxygen complexes as intermediates. J. Chem. Soc., Chem. Commun. pp. 335–336.

    Google Scholar 

  • Reihlen, H., Illig, R., and Wittig, R. 1925. The reactivity of complexly bound organic compounds. Ber. Dtsch. Chem. Ges. 58B, 12–19.

    CAS  Google Scholar 

  • Sato, M., Okawa, K., and Akabori, S. 1957. A new synthesis of threonine. Bull. Chem. Soc. Jpn. 30, 937–938.

    Article  CAS  Google Scholar 

  • Speck, J.F. 1948. Effect of cations on the decarboxylation of oxaloacetic acid. J. Biol. Chem. 178, 315–324.

    CAS  Google Scholar 

  • Taqui Khan, M.M., and Martell, A.E. 1967A. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J. Am. Chem. Soc. 89, 4176–4185.

    Google Scholar 

  • Taqui Khan, M.M., and Martell, A.E. 1967B. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation. J. Am. Chem. Soc. 89, 7104–7111.

    Article  Google Scholar 

  • Taqui Khan, M.M., and Martell, A.E. 1968. Kinetics of metal ion and metal chelate-catalyzed oxidation of ascorbic acid. III. Vanadyl ion catalyzed oxidation. J. Am. Chem. Soc. 90, 6011–6017.

    Article  Google Scholar 

  • Taqui Khan, M.M., and Martell, A.E. 1969. Kinetics of metal ion and metal chelate-catalyzed oxidation of ascorbic acid. IV. Uranyl ion catalyzed oxidation. J. Am. Chem. Soc. 91, 4468–4472.

    Google Scholar 

  • Taqui Khan, M.M., and Martell, A.E. 1974. Homogeneous Catalysis by Metal Complexes, Vol. 1. Academic Press, NY.

    Google Scholar 

  • Taube, H. 1947. Catalysis of the reaction of chlorine and oxalic acid complexes of trivalent manganese in solutions containing oxalic acid. J. Am. Chem. Soc. 69, 1418–1428.

    Article  CAS  Google Scholar 

  • Taube, H. 1948. The interaction of manganic ion and oxalate. Rates, equilibria and mechanism. J. Am. Chem. Soc. 70, 1216–1220.

    Article  CAS  Google Scholar 

  • Tyson, C.A., and Martell, A.E. 1972. Kinetics and mechanism of the metal chelate catalyzed oxidation of pyrocatechols. J. Am. Chem. Soc. 94, 939–945.

    Article  CAS  Google Scholar 

  • Udenfriend, S., Clark, C.T., Axelrod, J., and Brodie, B.B. 1954. Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. Biol. Chem. 208, 731–739.

    CAS  Google Scholar 

  • Van Dort, H.M., and Geurson, H.J. 1967. Salcomine-catalyzed oxidations of some phenols. A new method for the preparation of a number of p-benzoquinones. Rech. Trav. Chim. Pays-Bas. 86, 520–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 AVI Publishing Co.

About this chapter

Cite this chapter

Martell, A.E. (1985). Metal-Catalyzed Reactions of Organic Compounds. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food during Processing. Basic Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2265-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2265-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9389-7

  • Online ISBN: 978-1-4613-2265-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics