Skip to main content

Controlling Acyl Transfer Reactions of Hydrolases to Alter Food Constituents

  • Chapter
Chemical Changes in Food during Processing

Part of the book series: Basic Symposium Series ((IFTBSS))

  • 785 Accesses

Abstract

The hydrolases represent a large and diverse group of enzymes that play major roles in food processing and in the storage life of foods. More than 1500 hydrolases have been characterized in detail (Enzyme Nomenclature Committee 1979). They act to hydrolyze a wide variety of substrate molecules ranging from the cleavage of a specific bond in a simple substrate to multiple bonds in a variety of macromolecules. Endogenous as well as exogenous (added during processing or associated with microorganisms in food) hydrolases can be key components in the conversion of raw materials and ingredients into food products. Their action on available substrates can alter the texture, flavor, odor, and color of food systems to yield desirable food products. On the other hand, insufficient, excessive, or unwanted hydrolase activities can lead to undesirable quality attributes, including food spoilage. The food scientist must control the action of hydrolytic and other enzymes in foods in order to produce traditional and new food products and to maximize the storage stabilities of foods. An understanding of hydrolases at a more mechanistic level can supply the food scientist with insights to better control hydrolase activities and to design better processes and products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AARSMAN, A.J., and VAN DEN BOSCH, H. 1979. A comparison of acyloxyester and acyl-thioester substrates for some lipolytic enzymes. Biochim. Biophys. Acta 572, 519–530.

    CAS  Google Scholar 

  • ARAI, S., ASO, H., and KIMURA, H. 1983. An enzymatically modified protein produced with covalent incorporation of L-methionine for use in nutritional improvement of soy protein. Agric. Biol. Chem. 47, 2115–2117.

    Article  CAS  Google Scholar 

  • BABARIC, S., and LUISI, P.L. 1981. Micellar solubilization of biopolymers in or-ganic solvents. 5. Activity and conformation of a-chymotrypsin in isooctane-AOT reverse micelles. J. Am. Chem. Soc. 103, 4239–4244.

    Article  Google Scholar 

  • BAINES, B.S., and BROCKERHOFF, K. 1982. Characterization of papaya peptidase A as cysteine proteinase of Carica payaya L. with active centre properties that differ from those of papain by using 2,2′-dipyridyl disulphide and 4-chloro-7- nitrobenzoburazan as reactivity probes. Biochem. J. 205, 205–211.

    CAS  Google Scholar 

  • BASS, E.J., and CAYLE, T. 1975. Beer. In Enzymes in Food Processing. G. Reed (Editor), 2nd Edition. Academic Press, NY.

    Google Scholar 

  • BECH, A.M., and FOLTMANN, B. 1981. Partial primary structure of Mucor miehei protease. Neth. Milk Dairy J. 35, 275–280.

    CAS  Google Scholar 

  • BOTT, R., SUBRAMANIAN, E., and DAVIES, D.R. 1982. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5 A resolution. Biochemistry 21, 6956–6962.

    Article  CAS  Google Scholar 

  • BOZLER, H., WAYNE, S. J., and FRUTON, J.S. 1982. Specificity of pepsin-catalyzed peptide bond synthesis. Int. J. Pept. Protein Res. 20, 102–109.

    Article  CAS  Google Scholar 

  • BROCKERHOFF, H., and JENSEN, R.G. 1974. Lipolytic Enzymes. Academic Press, NY.

    Google Scholar 

  • BROCKERHOFF, K., and MALTHOUSE, J.P.G. 1980. Evidence for a two-state transition in papain that may have no close analogue in ficin. Biochem. J. 191, 707–718.

    Google Scholar 

  • BROCKERHOFF, K., BAINES, B.S., and MALTHOUSE, J.P.G. 1981. Differences in the interactions of the catalytic groups of the active centres of actinidin and papain. Biochem. J. 197, 739–746.

    Google Scholar 

  • BROKERHOFF, K., BAINES, B.S., and MALTHOUSE, J.P.G. 1981. Differences in the interactions of the catalytic groups of the active centres of actinidin and papain. Biochem. J. 197, 739–746.

    Google Scholar 

  • CHAPUS, C., SEMERIVA, M., BOVIERLAPPIERRE, C., and DESNUELLE, P. 1976. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry 15, 4980–4987.

    Article  CAS  Google Scholar 

  • DALBADIE-McFARLAND, G., COHEN, L.W., RIGGS, A.D., MORIN, C., ITAKURA, K., and RICHARDS, J.H. 1982. Oligonucleotide directed mutagenesis as a general and powerful method for studies of proteins function. Proc. Natl. Acad. Sci. U.S.A. 79, 6409–6413.

    Article  CAS  Google Scholar 

  • DALGLEISH, D.G. 1982. The enzymatic coagulation of milk. In Developments in Dairy Chemistry. P.F. Fox (Editor), Vol. 1, pp. 157–188. Applied Science Publishers, London.

    Google Scholar 

  • EDWARDS, J.H., and SHIPE, W.F. 1978. Characterization of plastein reaction products formed by pepsin, a-chymotrypsin and papain treatment of egg albumin hydrolysates. J. Food Sci. 43, 1215–1218.

    Article  CAS  Google Scholar 

  • ENZYME NOMENCLATURE COMMITTEE 1979. Nomenclature Committee of the International Union of Biochemistry on the Nomenclature and Classification of Enzymes. Academic Press, NY.

    Google Scholar 

  • FOLTMANN, B. 1981. Mammalian milk-clotting proteases: Structure, function, evolution and development. Neth. Milk Dairy J. 35, 223–231.

    CAS  Google Scholar 

  • FOX, P.F., MORRISSEY, P.A., and MULVIHILL, D.M. 1982. Chemical and enzy-matic modification of food proteins. In Development of Food Proteins. B.J.F. Hudson (Editor), Vol. 1, pp. 1–60. Applied Science Publishers, London.

    Google Scholar 

  • FRUTON, J.S. 1976. The mechanism of the catalytic action of pepsin and related acid proteinases. In Advances in Enzymology. A. Meister (Editor), pp. 1–36. John Wiley & Sons, Co., NY.

    Google Scholar 

  • FRUTON, J.S. 1982. Proteinase-catalyzed synthesis of peptide bonds. In Advances in Enzymology. A. Meister (Editor), pp. 239–306. John Wiley & Sons, Co., NY.

    Google Scholar 

  • FUJIMAKI, M., YAMASHITA, M, ARAI, S., and KATO, H. 1970. Enzymatic modification of proteins in foodstuffs. Part I. Enzymatic proteolysis and plastein synthesis application for preparing bland protein-like substances. Agric. Biol. Chem. 34, 1325–1332.

    Article  CAS  Google Scholar 

  • FUJIMAKI, M., ARAI, S., and YAMASHITA, M. 1977. Enzymatic protein degradia- tion and resynthesis for protein improvement. Adv. Chem. Ser. 160, 156–184.

    Article  CAS  Google Scholar 

  • GLAZER, A.N. 1966. Transesterification of reaction catalyzed by papain. J. Biol. Chem. 241, 3811.

    CAS  Google Scholar 

  • HOFSTEN, B.V., and LALASIDIS, G. 1976. Protease-catalyzed formation of plastein products and some of their properties. J. Agric. Food Chem. 24, 460–465.

    Article  Google Scholar 

  • HSU, L-N., DELBAERE, L.T.J., and JAMES, M.N.G. 1977. Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 A and sequence homology with porcine pepsin. Nature (London) 266, 140–145.

    Article  CAS  Google Scholar 

  • JAMES, M.N.G., HSU, I.-N., and DELBAERE, L.T.J. 1977. Mechanism of acid pro-tease catalysis based on the crystal structure of penicillopepsin. Nature (London) 267, 808–813.

    Article  CAS  Google Scholar 

  • JAMES, M.N.G., SIELECKI, A., SALETURO, F., RICH, D.H., and HOFMANN, T. 1982. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin. Proc. Natl. Acad. Sci. U.S.A. 79, 6137–6141.

    Article  CAS  Google Scholar 

  • JENSEN, R.G., GERRIOR, S.A., HAGERTY, M.M., and McMAHAN, K.E. 1978. Preparation of acyl glycerols and phospholipids with the aid of lipolytic enzymes. J. Am. Oil Chem. Soc. 55, 422–427.

    Article  CAS  Google Scholar 

  • KANG, C.K., WARNER, W.D., and RICE, E.E. 1974. Tenderization of meat with proteolytic enzymes. U.S. Pat. 3,818,106. June 18.

    Google Scholar 

  • KAY, J., and VALLER, M.J. 1981. The aspartate proteinases uses as rennet substitutes. Neth. Milk Dairy J. 35, 281–286.

    CAS  Google Scholar 

  • LINFIELD, W.M., BARAUSKAS, R.A., SIVIERI, L., SEROTA, S., and STEVENSON, R.W., SR. 1984. Enzymatic fat hydrolysis and synthesis. J. Am. Oil Chem. Soc. 61, 191–195.

    Article  CAS  Google Scholar 

  • MAUGH, T.H., II 1984. Need a catalyst? Design an enzyme. Science 223, 269–271.

    Article  Google Scholar 

  • MAXAM, A.M., and GILBERT, W. 1977. A new method of sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74, 560–564.

    Article  CAS  Google Scholar 

  • METRIONE, R., and JOHNSON, R.B. 1964. The enzymic condensation of a thiol esters-type carboxyl-activated acyl amino acid with an amino acid amide to form a peptide. Biochemistry 3, 482.

    Article  CAS  Google Scholar 

  • MONTI, J.C., and JOST, R. 1979. Papain-catalyzed synthesis of methione-enriched soy plasteins peptides. J. Agric. Food Chem. 27, 1281–1285.

    Article  CAS  Google Scholar 

  • OKUMURA, S., IWAI, M., and TSUJISAKA, Y. 1976. Positional specificities of four kinds of microbial lipases. Agric. Biol. Chem. 40, 655–660.

    Article  CAS  Google Scholar 

  • OLD, R.W., and PRIMROSE, S.B. 1980. Principles of Gene Manipulation: An Introduction to Genetic Engineering. Univ. of California Press, Berkeley.

    Google Scholar 

  • PALLAVICINI, C., PERUFFO, A.D.B., and FINLEY, J.W. 1983. Comparative study of soybean plasteins synthesized with soluble and immobilized a-chymotrypsin. J. Agric. Food Chem. 31, 846–848.

    Article  CAS  Google Scholar 

  • POLGAR, L. 1977. The mechanism of action of thiol enzymes. Int. J. Biochem. 8, 171–176.

    Article  CAS  Google Scholar 

  • RICH, D.H., and BERNATOWICZ, M.S. 1982. Synthesis of analogues of the car- boxyl protease inhibitor pepstatin. Effect of structure in subside P3 on inhibition of pepsin. J. Med. Chem. 25, 791–795.

    Article  CAS  Google Scholar 

  • SANGER, F., NICKLEN, S., and COULSON, A.R. 1977. DNA sequencing with chain- terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467.

    Article  CAS  Google Scholar 

  • SATTERLEE, L.D., and CHANG, K.-C. 1982. Nutritional quality of deteriorated proteins. ACS Symp. Ser. 206, 409–431.

    Article  CAS  Google Scholar 

  • SMITH, E.L., and KIMMEL, J.R. 1960. Papain. In The Enzymes. P.D. Boyer, J. Lardy, and K. Myrback (Editors), Vol. 4, pp. 133–173. Academic Press, N.Y.

    Google Scholar 

  • STEVENSON, R.W., LUDDY, F.E., and ROTHBART, H.L. 1979. Enzymatic acyl exchange to vary saturation in di- and triglycerides. J. Am. Oil Chem. Soc. 56, 676–680.

    Article  CAS  Google Scholar 

  • SUNG, H.-Y., CHEN, H.-J., LIU, T.-Y., and SU, J.-C. 1983. Improvement of the functionality of soy protein by introduction of new thiol groups through a papain- catalyzed acylation. J. Food Sci. 48, 708–711.

    Article  CAS  Google Scholar 

  • SVENSON, A., CARLSSON, J., and EAKER, D. 1977. Specific isolation of cysteine peptides by covalent chromatography on thiol agarose derivatives. FEBS Lett. 73, 171–174.

    Article  CAS  Google Scholar 

  • TANAKA, T., ONO, E., ISHIHARA, M, YAMANAKA, S., and TAKINAMI, K. 1981. Enzymatic acyl exchange of triglyceride in n-hexane. Agric. Biol. Chem. 45, 2387–2389.

    Article  CAS  Google Scholar 

  • TSUJISAKA, Y., OKUMURA, S., and IWAI, M. 1977. Glyceride synthesis by four kinds of microbial lipase. Biochim. Biophys. Acta 489, 415–422.

    CAS  Google Scholar 

  • VISSER, S, SLANGER, K.J., HUP, G., and STADHOUDERS, J. 1983. Bitter flavour in cheese. 3. Comparative gel-chromatographic analysis of hydrophobic peptide fractions from twelve Gouda-type cheeses and identification of bitter peptides isolated from a cheese made with Streptococcus cremoris strain HP. Neth. Milk Dairy J. 37, 181–192.

    CAS  Google Scholar 

  • WALSH, C. 1979. Enzymatic Reaction Mechanisms. W. H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • WATANABE, M., and ARAI, S. 1982. Proteinaceous surfactants prepared by covalent attachment of L-leucine ra-alkyl esters in food proteins by modification with papain. Adv. Chem. Ser. 198, 199–221.

    Article  CAS  Google Scholar 

  • WATANABE, M., SHIMADA, A., and ARAI, S. 1981A. Enzymatic modifications of protein functionality: Implanation of potent amphilicity to succinylated proteins by covalent attachment of leucine alkyl esters. Agric. Biol. Chem. 45, 1621–1625

    Article  CAS  Google Scholar 

  • WATANABE, M., SHIMADA, A., YAZWA, E., KATO, T., and ARAI, S. 1981B. Proteinaceous surfactants produced form gelatin by enzymatic modification: Application to preparation of food items. J. Food Sci. 46, 1738–1740.

    Article  CAS  Google Scholar 

  • WATANABE, M., TOYOKAWA, H., SHIMADA, A., and ARAI, S. 1981C. Proteinaceous surdactants produced from gelatin by enzymatic modifications: Evaluation for their functionality. J. Food Sci. 46, 1467–1469.

    Article  CAS  Google Scholar 

  • WATANABE, M., FUJII, N., and ARAI, S. 1982. Characterization of foam and emulsion stability functions of enzymatically modified protein with surfactancy. Agric. Biol. Chem. 46, 1587–1592.

    Article  CAS  Google Scholar 

  • WATSON, J.D., TOOZE, J., and KURTZ, D.T. 1983. Recombinant DNA: A Short Course. W.H. Freeman and Co., NY.

    Google Scholar 

  • WHITAKER, J.R. 1972. Principles of Enzymology for the Food Sciences. Marcel Dekker, NY.

    Google Scholar 

  • WHITAKER, J.R., and PUIGSERVER, A.J. 1982. Fundaments and applications of enzymatic modifications of proteins: An overview. Adv. Chem. Ser. 198, 57–87.

    Article  CAS  Google Scholar 

  • YAMASHITA, M., ARAI, S., IMAIZUMI, Y., AMANO, Y., and FUJIMAKI, M. 1979. A one-step process for incorporation of L-methionine into soy protein by treatment with papain. J. Agric. Food Chem. 27, 52–56.

    Article  CAS  Google Scholar 

  • YOKOZEKI, K., YAMANAKA, S., TAKINAMI, K., HIROSE, Y., TANAKA, A., SON- OMOTO, K., and FUKUI, S. 1982. Application of immobilized lipase to region- specific interesterification of triglyceride in organic solvent. Eur. J. Appl. Microbiol. Biotechnol. 14, 1–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 AVI Publishing Co.

About this chapter

Cite this chapter

Richardson, T. (1985). Controlling Acyl Transfer Reactions of Hydrolases to Alter Food Constituents. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food during Processing. Basic Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2265-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2265-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9389-7

  • Online ISBN: 978-1-4613-2265-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics