Skip to main content

Dephosphorylation of Sea Urchin Sperm Guanylate Cyclase During Fertilization

  • Chapter
The Molecular and Cellular Biology of Fertilization

Summary

Exposure of Arbacia punctulata spermatozoa to solubilized egg jelly results in the immediate dephosphorylation (within 3 sec) of an abundant 160,000 dalton (160 kDa) sperm membrane protein, and a simultaneous increase in its electrophoretic mobility to 150 kDa. The sperm phosphoprotein has been identified as guanylate cyclase. Correlated with the mobility shift of the cyclase is a decrease in its enzymatic activity. In this paper we will briefly review the work on the sperm guanylate cyclase, present new data on the role of ion fluxes in the control of its dephosphorylation, and discuss what role the dephosphorylation might play in successful sperm-egg interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best, D., Warr, P.J. and Gull, K. 1981. Influence of the composition of commercial sodium dodecyl sulfate preparations on the separation of α-and β-tubulin during polyacrylamide gel electrophoresis. Anal. Biochem. 114: 281–284.

    Article  Google Scholar 

  2. Christen, R., Schackmann, R.W. and Shapiro, B.M. 1982. Elevation of intracellular pH activates sperm respiration and motility of sperm of the sea urchin Strongylocentrotus purpuratus. J. Biol. Chem. 257: 14881–14890.

    Google Scholar 

  3. Dunker, A.K. and Rueckert, R.R. 1969. Observations on molecular weight determinations on polyacrylamide gel. J. Biol. Chem. 244: 5074–5080.

    Google Scholar 

  4. Epel, D. 1978. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Topics Dev. Biol. 12: 185–246.

    Article  Google Scholar 

  5. Francis, S.H., Lincoln, T.M. and Corbin, J.D. 1980. Characterization of a novel cGMP-binding protein from rat lung. J. Biol. Chem. 225: 620–626.

    Google Scholar 

  6. Garbers, D.L. 1981. The elevation of cyclic AMP concentrations in flagella-less sea urchin sperm heads. J. Biol. Chem. 256: 620–624.

    Google Scholar 

  7. Garbers, D.L. and Murad, F. 1979. Guanylate cyclase assay methods. Adv. Cyclic Nucleotide Res. 10: 57–67.

    Google Scholar 

  8. Garbers, D.L. and Kopf, G.S. 1980. The regulation of spermatozoa by calcium and cyclic nucleotides. Adv. Cyclic Nucleotide Res. 13: 251–306.

    Google Scholar 

  9. Garbers, D.L., Kopf, G.S., Tubb, D.J. and Olson, G. 1983. Elevation of sperm adenosine 3’:5’-monophosphate concentrations by a fucose-sulfate-rich complex associated with eggs: I. Structural characterization. Biol. Reprod. 29: 1211–1220.

    Article  Google Scholar 

  10. Gates, R.E. and King, L.E. 1982. The EGF receptor-kinase has multiple phosphorylation sites. Biochem. Biophys. Res. Comm. 105: 57–66.

    Article  Google Scholar 

  11. Gray, J.P. and Drummond, G.I. 1976. Guanylate cyclase of sea urchin sperm: subcellular localization. Arch. Biochem. Biophys. 172: 31–38.

    Article  Google Scholar 

  12. Hansbrough, J.R. and Garbers, D.L. 1981. Speract; Purification and characterization of a peptide associated with eggs that activates spermatozoa. J. Biol. Chem. 256: 1447–1452.

    Google Scholar 

  13. Hansbrough, J.R. and Garbers, D.L. 1981. Sodium-dependent activation of sea urchin spermatozoa by speract and monensin. J. Biol. Chem. 256: 2235–2241.

    Google Scholar 

  14. Lee, H.C., Johnson, C. and Epel, D. 1983. Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Develop. Biol. 95: 31–45.

    Article  Google Scholar 

  15. Lincoln, T.M. and Corbin, J.D. 1983. Characterization and biological role of the cGMP-dependent protein kinase. Adv. Cyclic Nucleotide Res. 15: 139–192.

    Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, J.R. 1951. Protein measurements with the folin-phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  17. Margulies, M.M. and Tiffany, H.L. 1984. Importance of sodium dodecyl sulfate source to electrophoretic separations of thylakoid polypeptides. Anal. Biochem. 136: 309–313.

    Article  Google Scholar 

  18. Miller, W.H. Does cyclic GMP hydrolysis control visual signal transduction in rods? Trends Pharmacol. Sci. (Dec. 1983) 509–511.

    Google Scholar 

  19. Moore, S. and Stein, W.H. 1963. Chromatographic determination of amino acids by the use of automated recording equipment. Meth. Enz. 6: 819–831.

    Article  Google Scholar 

  20. Radany, E.W., Gerzer, R. and Garbers, D.L. 1983. Purification and characterization of particulate guanylate cyclase from sea urchin spermatozoa. J. Biol. Chem. 258: 8346–8351.

    Google Scholar 

  21. Repaske, D.R. and Garbers, D.L. 1983. A hydrogen ion flux mediates stimulation of respiratory activity by speract in sea urchin spermatozoa. J. Biol. Chem. 258: 6025–6029.

    Google Scholar 

  22. Sano, M. 1976. Subcellular localizations of guanylate cyclase and 3’,5’-cyclic nucleotide phosphodiesterase in sea urchin sperm. Biochim. Biophys. Acta 428: 525–531.

    Google Scholar 

  23. Schackmann, R.W., Eddy, E.M. and Shapiro, B.M. 1978. The acrosome reaction of Strongylocentrotus purpurtatus sperm; Ion requirements and movements. Develop. Biol. 65: 483–495.

    Article  Google Scholar 

  24. Schackmann, R.W. and Shapiro, B.W. 1981. A partial sequence of ionic changes associated with the acrosome reaction of Strongylocentrotus purpuratus. Develop. Biol. 81: 145–154.

    Article  Google Scholar 

  25. Schackmann, R.W., Christen, R. and Shapiro, B.M. 1981. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc. Nat. Acad. Sci. USA 78: 6066–6070.

    Article  ADS  Google Scholar 

  26. SeGall, G.K. and Lennarz, W.J. 1979. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Develop. Biol. 71: 33–48.

    Article  Google Scholar 

  27. Smith, A.C. and Garbers, D.L. 1983. The binding of an 125 I-speract analogue to spermatozoa, in: “Biochemistry of Metabolic Processes,” D. L. F. Lennon, F. W. Stratmen, and R. N. Zahlten, eds., pp. 15–28, Elsevier Biomedical, New York.

    Google Scholar 

  28. Suzuki, N., Nomura, K., Ohtake, H. and Isaka, S. 1981. Purification and the primary structure of sperm-activating peptides from the jelly coat of sea urchin eggs. Biochem. Biophys. Res. Comm. 99: 1238–1244.

    Article  Google Scholar 

  29. Suzuki, N. and Garbers, D.L. 1984. Stimulation of sperm respiration rates by speract and resact at alkaline extracellular pH. Biol. Reprod. 30: 1167–1174.

    Article  Google Scholar 

  30. Suzuki, N., Shimomura, H., Radany, E.W., Ramaro, C.S., Ward, G.E., Bentley, J.K. and Garbers, D.L. A peptide associated with eggs causes a mobility shift in a major plasma membrane protein of spermatozoa. J. Biol. Chem. (in press).

    Google Scholar 

  31. Swank, R.T. and Munkres, K.D. 1971. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal. Biochem. 39: 462–477.

    Article  Google Scholar 

  32. Swarup, G. and Garbers, D.L. 1982. Phosphoprotein phosphatase activity of sea urchin spermatozoa. Biol. Reprod. 26: 953–960.

    Article  Google Scholar 

  33. Vacquier, V.D. Rapid immunoassays for the acrosome reaction of sea urchin sperm utilizing antibody to bindin. Exp. Cell Res (in press).

    Google Scholar 

  34. Ward, G.E. and Vacquier, V.D. 1983. Dephosphorylation of a major sperm membrane protein is induced by egg jelly during sea urchin fertilization. Proc. Nat. Acad. Sci. USA 5578 - 5582.

    Google Scholar 

  35. Ward, G.E. and Vacquier, V.D. 1983. Sea urchin egg jelly induces the dephosphorylation of a 160 kDa sperm flagellar membrane protein: the role of Na+/H+ exchange. J. Cell Biol. 97: 250a

    Google Scholar 

  36. Ward, G.E. and Vacquier, V.D. 1983. Sea urchin egg jelly induces the dephosphorylation of a 160 kDa sperm flagellar membrane protein: the role of Na+/H+ exchange. J. Cell Biol. 97: 250a

    Google Scholar 

  37. Wegenar, A.D. and Jones, L.R. 1984. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate- polyacrylamide gels. J. Biol. Chem. 259: 1834–1841.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ward, G.E., Moy, G.W., Vacquier, V.D. (1986). Dephosphorylation of Sea Urchin Sperm Guanylate Cyclase During Fertilization. In: Hedrick, J.L. (eds) The Molecular and Cellular Biology of Fertilization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2255-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2255-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9320-0

  • Online ISBN: 978-1-4613-2255-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics