Skip to main content

Structure, Assembly and Function of the Surface Envelope (Fertilization Envelope) From Eggs of the Sea Urchin, Strongylocentrotus Purpuratus

  • Chapter

Abstract

The sea urchin fertilization envelope (FE) is formed following initial sperm-egg interaction from the egg surface vitelline envelope (VE) and the paracrystalline protein fraction (PCF), derived from cortical granules. Although mature FEs are physicochemically hardened postinsemination, a major protein fraction consisting of seven major polypeptides was extracted from Strongylocentrotus purpuratus FEs and the major, separated components were immunologically cross-reactive with the principal polypeptides in PCF and isolated cortical granules. Antibodies prepared against extracted, core FEs were immunologically crossreactive with isolated VEs, but not with PCF, suggesting that only VE components are covalently crosslinked. Based on protease inhibitor experiments, our model of FE development is that a benzamidine-sensitive, cortical granule protease cleaves a 200 kD VE polypeptide during initial envelope elevation to set up the morphological change in FE papillae which occurs later. Divalent cations precipitate the PCF and form metal proteinate bridges between the VE and PCF. Based on peroxidase inhibitor experiments, we suggest that the cortical granule peroxidase crosslinks VE polypeptides, beginning at 2–3 min postinsemination, to restrict the permeability of the VE so that normal envelope thickening occurs. A 305 kD VE polypeptide was isolated and appears to be important in sperm-egg interaction based on inhibition of sperm binding and fertilization by antibodies against the purified polypeptide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Acevedo-Duncan, M., and Carroll, E.J., Jr. 1986. Isolation of a sea urchin egg vitelline envelope with sperm receptor activity. Dev. Biol, in review.

    Google Scholar 

  2. Acevedo-Duncan, M., and Carroll, E.J., Jr. 1986. Immunological evidence that a 305 kilodalton vitelline envelope polypeptide is a sperm receptor. Dev. Biol, in review.

    Google Scholar 

  3. Afzelius, B.A. 1956. The ultrastructure of the cortical granules and their products in the sea urchin egg as studied with the electron microscope. Exp. Cell Res. 10: 257–285.

    Article  Google Scholar 

  4. Anderson, E. 1968. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J. Cell Biol. 37: 514–539.

    Article  Google Scholar 

  5. Baginski, R.M., McBlaine, P.J., and Carroll, E.J., Jr. 1982. Novel procedures for collection of sea urchin egg cortical granule exudate: Partial characterization and evidence for postsecretion processing. Gamete Res. 6: 39–52.

    Article  Google Scholar 

  6. Bryan, J. 1970. The isolation of a major structural element of the sea urchin fertilization membrane. J. Cell Biol. 44: 635–644.

    Article  Google Scholar 

  7. Bryan, J. 1970. On the reconstitution of the crystalline components of the sea urchin fertilization membrane. J. Cell Biol. 45: 606–614.

    Article  Google Scholar 

  8. Carroll, E.J., Jr. 1976. Cortical granule protease from sea urchin eggs. Meth. Enzymol. 45: 343–353.

    Article  Google Scholar 

  9. Carroll, E.J., Jr., and Baginski, R.M. 1978. Sea urchin fertilization envelope: Isolation, extraction and characterization of a major protein fraction from Stronglyocentrotus purpuratus embryos. Biochemistry 15: 2605–2612.

    Article  Google Scholar 

  10. Carroll, E.J., Jr., Byrd, E.W., Jr., and Epel, D. 1977. A novel procedure for obtaining denuded sea urchin eggs and observations on the role of the vitelline layer in sperm reception and egg activation. Exp. Cell Res. 108: 365–374.

    Article  Google Scholar 

  11. Carroll, E.J., Jr., and Endress, A.G. 1982. Sea urchin fertilization envelope: Uncoupling of cortical granule exocytosis from envelope assembly and isolation of an envelope intermediate from Stronglocentrotus purpuratus embryos. Dev. Biol. 94: 252–258.

    Article  Google Scholar 

  12. Carroll, E.J., Jr., and Epel, D. 1975. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev. Biol. 44: 22–32.

    Article  Google Scholar 

  13. Carroll, E.J., Jr., and Epel, D. 1975. Elevation and hardening of the fertilization membrane in sea urchin eggs: Role of the soluble fertilization product. Exp. Cell Res. 90: 429–432.

    Article  Google Scholar 

  14. Chandler, D.E., and Heuser, J. 1980. Vitelline layer of the sea urchin egg and its modification during fertilization: Freeze-fracture study using quick-freezing and deep etching. J. Cell Biol. 84: 618–632.

    Article  Google Scholar 

  15. Endo, Y. 1952. The role of the cortical granules in the formation of the fertilization membrane in eggs from Japanese sea urchins. Exp. Cell Res. 3: 406–418.

    Article  Google Scholar 

  16. Endo, Y. 1961. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. I. Clypeaster japonicus. Exp. Cell Res. 25: 383–397.

    Article  Google Scholar 

  17. Endo, Y. 1961. The role of the cortical granules in the formation of the fertilization membrane in the eggs of sea urchins. II. Exp. Cell Res. 25: 518–528.

    Article  Google Scholar 

  18. Epel, D., Weaver, A.M., and Mazia, D. 1970. Methods for removal of the vitelline membrane of sea urchin eggs. I. Use of dithiothreitol (Cleland’s reagent). Exp. Cell Res. 61: 64–68.

    Article  Google Scholar 

  19. Epel, D., Weaver, A.M., Muchmore, A.V., and Schimke, R.T. 1969. g-1,3-glucanase of sea urchin eggs: Release from particles at fertilization. Science 163: 294–296.

    Google Scholar 

  20. Foerder, C.A., and Shapiro, B.M. 1977. Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc. Nat. Acad. Sci. USA 74: 4214–4218.

    Article  ADS  Google Scholar 

  21. Gache, C., Niman, H.L., and Vacquier, V.D. 1983. Monoclonal antibodies to the sea urchin egg vitelline layer inhibit fertilization by blocking sperm adhesion. Exp. Cell Res. 147: 75–84.

    Article  Google Scholar 

  22. Glabe, C.G., and Vacquier, V.D. 1977. Isolation and characterization of the vitelline layer of sea urchin eggs. J. Cell Biol. 75: 410–421.

    Article  Google Scholar 

  23. Glabe, C.G., and Vacquier, V.D. 1978. Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc. Nat. Acad. Sci. USA 75: 881–885.

    Article  ADS  Google Scholar 

  24. Gould-Somero, M., and Holland, L. 1975. Oocyte differentiation in Urechis caupo (Echiura): A fine structural study. J. Morphol. 147: 475–506.

    Article  Google Scholar 

  25. Gray, J., Justice, R., Nagel, G.M., and Carroll, E.J., Jr. 1986. Resolution and characterization of a major protein of the sea urchin hyaline layer. J. Biol. Chem., in review.

    Google Scholar 

  26. Hall, H.G. 1978. Hardening of the sea urchin fertilization envelope by peroxidase catalyzed phenolic coupling of tyrosines. Cell 15: 343–355.

    Article  Google Scholar 

  27. Harvey, E.N. 1910. The mechanism of membrane formation and other early changes in developing sea urchin eggs as bearing upon the problem of artificial parthenogenesis. J. Exp. Zool. 8: 355–376.

    Article  Google Scholar 

  28. Hobson, A.D. 1932. On the vitelline membrane of the egg of Psammechinus miliaris and Teredo norvegica. Brit. J. Exp. Biol. 9: 93–106.

    Google Scholar 

  29. Inoue, S., and Hardy, J.P. 1971. Fine structure of the fertilization membranes of sea urchin embryos. Exp. Cell. Res. 68: 259–272.

    Article  Google Scholar 

  30. Justice, R.W., and Carroll, E.J., Jr. 1986. Effects of cortical granule enzyme inhibitors on development of the ultrastructure and polypeptide spectrum of the sea urchin fertilization envelope. In preparation.

    Google Scholar 

  31. Kay, E., Eddy, E.M., and Shapiro, B.M. 1982. Assembly of the fertilization membrane of the sea urchin: Isolation of a divalent cation-dependent intermediate and its crosslinking in vitro. Cell 29: 867–875.

    Article  Google Scholar 

  32. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (London) 227: 680–685.

    Article  ADS  Google Scholar 

  33. Lillie, R.S. 1911. The physiology of cell division. III. The action of calcium salts in preventing the initiation of cell division in unfertilized eggs through isotonic solution of sodium salts. Am. J. Physiol. 27: 289–307.

    Google Scholar 

  34. Loeb, J. 1913. In: “Artificial Parthenogenesis and Fertilization” ( Chicago: University of Chicago Press ), p. 208.

    Google Scholar 

  35. Loeb, J. 1916. In: “The Organism as a Whole” ( New York: G. P. Putnam’s Sons ), p. 108.

    Google Scholar 

  36. McBlaine, P.J., and Carroll, E.J., Jr. 1980. Sea urchin egg hyaline layer: Evidence for the localization of hyalin on the unfertilized egg surface. Dev. Biol. 75: 137–147.

    Article  Google Scholar 

  37. Motomura, I. 1941. Materials in the fertilization membrane in the eggs of echinoderms. Sci. Rep. Tohoku Univ. (4) 16: 345–363.

    Google Scholar 

  38. Moy, G.W., and Vacquier, V.D. 1979. Immunoperoxidase localization of bindin during sea urchin fertilization. Curr. Top. Dev. Biol. 13: 31–44.

    Article  Google Scholar 

  39. Niman, H.L., Hough-Evans, B.R., Vacquier, V.D., Britten, R.J., Lerner, R.A., and Davidson, E.H. 1984. Proteins of the sea urchin egg vitelline layer. Dev. Biol. 102: 390–401.

    Article  Google Scholar 

  40. Rossignol, D.P., Earles, B.J., Decker, G.L., and Lennarz, W.J. 1984. Characterization of the sperm receptor on the surface of eggs of Strongylocentrotus purpuratus. Dev. Biol. 104: 308–321.

    Article  Google Scholar 

  41. Rossignol, D.P., Roschelle, A.J., and Lennarz, W.J. 1981. Sperm-egg binding: Identification of a species-specific sperm fifceptor from eggs of Stronglylocentrotus purpuratus. J. Siijpramol. Struct. Cell Biochem. 15: 347–358.

    Article  Google Scholar 

  42. Santiago, L., and Carroll, E.J., Jr. 1986. Sea urchin embryo fertilization envelope: Immunological evidence that envelope hardening involves intermolecular crosslinking of vitelline envelope polypeptides. Dev. Biol., in review.

    Google Scholar 

  43. Schmell, E., Earles, B.J., Breaux, C., and Lennarz, W.J. 1977. Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata. Dev. Biol. 72: 35–46.

    Google Scholar 

  44. Schuel, H., Schuel, R., Dandekar, P., Boldt, J., and Summers, R.G. 1982. Sodium requirements in hardening of the fertilization envelope and embryonic development in sea urchins, Biol. Bull. 162: 202–213.

    Article  Google Scholar 

  45. Stevens, R.E., and Kane, R.E. 1970. Some properties of hyalin. The calcium-insoluble protein of the hyaline layer of the sea urchin egg. J. Cell Biol. 44: 611–617.

    Article  Google Scholar 

  46. Sugiyama, M. 1938. Effect of some divalent ions upon the membrane development of sea urchin eggs. J. Fac. Sci. Imp. Univ. Tokyo (4) 4: 501–508.

    Google Scholar 

  47. Sugiyama, M. 1938. Further studies on the development of the fertilization membrane in sea urchin egg. Annot. Zool. Japan. 17: 360–364.

    Google Scholar 

  48. Sugiyama, M. 1951. Re-fertilization of the fertilized eggs of the sea urchin. Biol. Bull. 101: 335–344.

    Article  Google Scholar 

  49. Tegner, M.J., and Epel, D. 1973. Sea urchin sperm-egg interactions studied with the scanning electron microscope. Science 179: 685–688.

    Article  ADS  Google Scholar 

  50. Veron, M., Foerder, C., Eddy, E.M., and Shapiro, B.M. 1977. Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell 10: 321–328.

    Article  Google Scholar 

  51. Villacorta-Moeller, M.N., and Carroll, E.J., Jr. 1982. Sea urchin embryo fertilization envelope: Immunological evidence that soluble envelope proteins are derived from cortical granule secretions. Dev. Biol. 94: 415–424.

    Article  Google Scholar 

  52. Voller, A., Bidwell, D., and Bartless, A. 1976. Microplate enzyifte immunoassay for the immunodiagnosis of virus infections. In: “Manual of Clinical Immunology,” N. Rose and W. Friedman, eds., American Society for Micorbiology, Washington D.C., p. 506–512.

    Google Scholar 

  53. Yoshida, M., and Aketa, K. 1983. A 225 kdalton glycoprotein is the active core structure of the sperm-binding factor of the sea urchin Anthocidaris crassispina. Exp. Cell Res. 148: 243–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Carroll, E.J., Acevedo-Duncan, M., Justice, R.W., Santiago, L. (1986). Structure, Assembly and Function of the Surface Envelope (Fertilization Envelope) From Eggs of the Sea Urchin, Strongylocentrotus Purpuratus . In: Hedrick, J.L. (eds) The Molecular and Cellular Biology of Fertilization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2255-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2255-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9320-0

  • Online ISBN: 978-1-4613-2255-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics