Skip to main content

Molecular Mechanisms in Lymphokine-Induced Macrophage Activation-Enhanced Production of Oxygen Radicals

  • Chapter
Immunobiology and Immunopharmacology of Bacterial Endotoxins

Part of the book series: University of South Florida International Biomedical Symposia Series ((EMISS,volume 18))

  • 131 Accesses

Abstract

Macrophages (MPs) are key effector cells in the eradication of a variety of unicellular or multicellular pathogens and, most likely, in the limitation of malignant growth. The principal cytotoxic mechanism of MPs is exerted on microorganisms internalized by phagocytosis such as bacteria, fungi and protozoa. A second mechanism is represented by damage inflicted to extracellular targets ranging from tumor cells to large metazoan parasites. In addition, MPs exhibit suppressor activity on cells of the immune system, such as T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. M. Babior, Oxygen-dependent microbial killing by phagocytes, New Eng. J. Med. 298: 659 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. J. A. Badwey and M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Ann. Rev. Biochem. 49: 695 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. D. Boraschi et al., IFN beta-induced reduction of superoxide anion generation by macrophages, Immunology 45: 621 (1982).

    PubMed  CAS  Google Scholar 

  4. D. Boraschi, S. Censini, and A. Tagliabue, Interferon gamma reduces macrophage suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin 1 production, J. Immunol., in press (1985).

    Google Scholar 

  5. N. Borregaard and A. I. Tauber, Subcellular localization of the human neutrophil NADPH oxidase, J. Biol. Chem. 259: 47 (1984).

    PubMed  CAS  Google Scholar 

  6. Y. Bromberg and E. Pick, Unsaturated fatty acids as second messengers of superoxide generation by macrophages, Cell. Immunol. 79: 240 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Bromberg and E. Pick, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macropahges, Cell. Immunol., in press (1985).

    Google Scholar 

  8. Z. A. Cohn, The activation of mononuclear phagocytes: fact, fancy and future, J. Immunol. 121: 813 (1978).

    PubMed  CAS  Google Scholar 

  9. R. E. Fowles, et al., The enhancement of macrophage bacteriostasis by products of activated lymphocytes, J. Exp. Med. 138: 952 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. M. Freund and E. Pick, Biochemistry of lymphokine action on macrophages-modulation of macropahge superoxide production by lymphokine, in: “Thymic Hormones and Lymphokines,” A.L. Goldstein, ed., Plenum Press, New York, in press (1985a).

    Google Scholar 

  11. M. Freund and E. Pick, The mechanism of action of lymphokines. VIII. Lymphokine-enhanced spontaneous hydrogen peroxide production by macropahges, Immunology in press (1985b).

    Google Scholar 

  12. M. Kaku et al., Enhanced superoxide anion release from phagocytes by muramyl dipeptide or lipopolysaccharide, Infect. Immun. 39: 559 (1983).

    PubMed  CAS  Google Scholar 

  13. G. B. Macaness, The influence of immunologically committed lymphoid cells on macrophage activation in vivo, J. Exp. Med. 129: 973 (1969).

    Article  Google Scholar 

  14. L. McPhail, C. C. Clayton, and R. Snyderman, Evidence that activation of human neutrophil NADPH oxidase involves association of a cytosolic factor with membrane components, Clin. Res. 32: 315A (1984).

    Google Scholar 

  15. M. S. Meltzer, Tumor cytotoxicity by lymphokine-activated macrophages: development of macrophage tumoricidal activity requires a sequence of reactions, Lymphokines 3: 319 (1981).

    CAS  Google Scholar 

  16. H. W. Murray, Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular leish-mania donovani amastigotes, J. Immunol. 129: 351 (1982).

    PubMed  CAS  Google Scholar 

  17. H. W. Murray and D. M. Cartelli, Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and independent leishmanicidal activity, J. Clin. Invest. 72: 32 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. H. W. Murray and Z. A. Cohn, Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as expression of macrophage activation, J. Exp. Med. 152: 1596 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. H. W. Murray, C. F. Nathan, and Z. A. Cohn, Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers and oxygen intermediates, J. Exp Med. 152: 1610 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. H. W. Murray, B. Y. Rubin, and C. D. Rothermel, Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon gamma is the activating lymphokine, J. Clin. Invest. 72: 1506 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. A. Nakagawara et al., Lymphokines enhance the capacity of human monocytes to secrete reactive oxygen intermediates. J. Clin. Invest. 70: 1042 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. A. Nakagawara, C. F. Nathan, and A. Z. Cohn, Hydrogen peroxide metabolism in human monocytes during differentiation in vitro, J. Clin. Invest. 68: 1243 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. C. F. Nathan et al., Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of trypanosoma cruzi, J. Exp. Med. 149: 1056 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. C. F. Nathan et al., Identification of interferon gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity, J. Exp. Med. 158: 670 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. R. J. North, The concept of the activated macrophage, J. Immunol. 121: 806 (1978).

    PubMed  CAS  Google Scholar 

  26. E. Pick and Y. Bromberg, Quo vadis macrophage activation - role of phospholipids in the elicitation of the oxidative burst in macrophages, Transpl. Proc. 14: 570 (1982).

    CAS  Google Scholar 

  27. E. Pick and Y. Bromberg, Regulation of macrophage function by lymphokines - role of membrane phospholipids, in: “Advances in Immunopharmacology 2,” J. W. Hadden et al., eds., Pergamon Press, Oxford (1983).

    Google Scholar 

  28. E. Pick, Y. Bromberg, and M. Freund, Extrinsic regulation of macrophage function by lymphokines. Effect of lymphokines on the stimulated oxidative metabolism of macrophages, Adv. Exp. Med. Biol. 155: 471 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. E. Pick and M. Freund, Biochemical mechanisms in macrophage activation by lymphokines: Intracellular peroxide production by lymphokine- treated macrophages, in: “Progress in Immunology,” Volume 5, Y. Yamamura and T. Tada, eds., Academic Press, New York (1983).

    Google Scholar 

  30. E. Pick and Y. Keisari, A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture, J. Immunol. Meth. 38: 161 (1980).

    Article  CAS  Google Scholar 

  31. E. Pick and Y. Keisari, Superoxide and hydrogen peroxide production by chemically elicited peritoneal macrophages. Induction by multiple nonphagocytic stimuli, Cell. Immunol. 59: 301 (1981).

    Article  PubMed  CAS  Google Scholar 

  32. M. Sasada, M. J. Pabst, and R. B. Johnston, Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase, J. Biol. Chem. 258: 9631 (1983).

    PubMed  CAS  Google Scholar 

  33. W. A. Scott et al., Regulation of arachidonic acid metabolism by macrophage activation, J. Exp. Med. 155:1148 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. H. B. Simon and J. N. Sheagren, Enhancement of macrophage bactericidal capacity by antigenically stimulated immune lymphocytes, Cell. Immunol. 4: 163 (1972).

    Article  PubMed  Google Scholar 

  35. A. Szuro-Sudol, H. W. Murray, and C. F. Nathan, Suppression of macrophage antimicrobial activity by a tumor cell product, J. Immunol. 131: 384 (1983).

    PubMed  CAS  Google Scholar 

  36. A. Szuro-Sudol and C. F. Nathan, Suppression of macrophage oxidative metabolism by products of malignant and nonmalignant cells, J. Exp. Med. 156: 945 (1982).

    Article  PubMed  CAS  Google Scholar 

  37. H. Tomioka and H. Saito, Hydrogen peroxide-releasing function of chemically elicited and immunologically activated macrophages: differential response to wheat germ lectin and concanavalin A, Infect. Imnun. 29: 469 (1980).

    CAS  Google Scholar 

  38. S. Tsunawaki and C. F. Nathan, Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes, J. Biol. Chem. 259 (1984).

    Google Scholar 

  39. J. B. Weinberg and M. A. Misukonis, Phorbol diester-induced H2O2 production by peritoneal macrophages. Different H2O2 production by macrophages from normal and BCG-infected mice despite comparable phorbol diester receptors, Cell. Immunol. 80: 405 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Pick, E. (1986). Molecular Mechanisms in Lymphokine-Induced Macrophage Activation-Enhanced Production of Oxygen Radicals. In: Szentivanyi, A., Friedman, H., Nowotny, A. (eds) Immunobiology and Immunopharmacology of Bacterial Endotoxins. University of South Florida International Biomedical Symposia Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2253-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2253-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9319-4

  • Online ISBN: 978-1-4613-2253-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics