Myocardial Performance and Adrenergic Modulation of Cyclic AMP Following Endotoxin Administration

  • Raymond E. Shepherd
  • Charles H. Lang
  • Brent A. Brumfield
  • Norman W. Robie
  • Karen R. DuSapin
  • Kathleen H. McDonough
Part of the University of South Florida International Biomedical Symposia Series book series (EMISS, volume 18)

Abstract

Myocardial contractility may change in response to altered circulatory demands imposed by physiological stimuli. Many studies have explored the behavior of cardiac contraction during shock of various etiologies. In the final phase of circulatory shock, clinical signs of circulatory insufficiency are indicated by low peripheral perfusion, low mean arterial blood pressure, high heart rate, and central venous congestion. A point is reached in the progression of the syndrome where fatal cardiovascular collapse occurs.

Keywords

Catheter Depression Glutathione Adenosine Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Aarons and P.B. Molinoff, Changes in the density of beta-adrenergic receptors in rat lymphocytes, heart, and lung after chronic treatment with propranolol, Pharmacol. Exptl. Ther. 221: 439 (1981).Google Scholar
  2. 2.
    R. D. Aarons, A. S. Nies, J. G. Gerber, and P. B. Molinoff, Decreased beta-adrenegic receptor density on human lymphocytes after chronic treatment with agonists, J. Pharmacol. Exptl. Ther. 224: 1 (1982).Google Scholar
  3. 3.
    H. R. Adams, C. R. Baxter, J. L. Parker, and N. B. Watts, Contractile function and rhythmicity of cardiac preparations from E. coli endotoxin-shocked guinea pigs, Circ. Shock 13: 241 (1984).PubMedGoogle Scholar
  4. 4.
    L. T. Archer, B. A. Benjamin, B. K. Beller-Todd, D. J. Brackett, M. F. Wilson, and L. B. Hinshaw, Does LD coli shock cause myocardial failure? Circ. Shock 9: 7 (1982).PubMedGoogle Scholar
  5. 5.
    C. R. Benedict and D. G. Grahame-Smith, Plasma noradrenaline and adrenaline concentrations and dopamine-beta-hydroxylase activity in patients with shock due to septicaemia, trauma and hemorrhage, Quart. J. Med. 185: 1 (1978).Google Scholar
  6. 6.
    B. L. Brown, J. D. M. Albano, R. P. Ekins, A. M. Sgherzi, and A. L. Tampion, A simple and sensitive saturation assay method for the measurement of adenosine 3′5′-cyclic monophosphate, Biochem. J. 121: 561 (1971).PubMedGoogle Scholar
  7. 7.
    W. S. Colucci, R. W. Alexander, G. H. Williams, R. E. Rude, B. L. Holman, M. A. Konstam, J. Wayne, G. H. Mudge, and E. Braunwald, Decreased lymphocyte beta-adrenergic receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist, Pirbuterol. N. Eng. J. Med. 305 (1981).Google Scholar
  8. 8.
    S. E. Epstein and E. Braunwald, The effect of beta adrenergic blockade on patterns of urinary sodium excretion: studies in normal subjects and in patients with heart disease, Ann. Intern. Med. 65: 20 (1966).PubMedGoogle Scholar
  9. 9.
    R. D. Feldman, L. E. Limbird, J. Nadeau, D. Robertson, A. J. J. Wood, Leukocyte beta-receptor alterations in hypertensive subjects, J. Clin. Invest. 73: 648 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    R. D. Feldman, L. E. Limbird, J. Nadeau, G. H. Fitzgerald, D. Robertson, and A. J. J. Wood, Dynamic regulation of leukocyte beta-adrenergic receptor-agonist interactions by physiological changes in circulating catecholamines, Clin. Invest. 72: 164 (1983).CrossRefGoogle Scholar
  11. 11.
    R. E. Fish, A. H. Burns, C. H. Lang, and J. A. Spitzer, Myocardial dysfunction in a non-lethal, non-shock model of chronic endotoxemia, Circ. Shock 16 (1985).Google Scholar
  12. 12.
    T. J. Franklin, W. P. Morris, and P. A. Twose, Densensitization of beta-adrenergic receptors in human fibroblasts in tissue culture, Mol. Pharmacol. 11: 485 (1975).Google Scholar
  13. 13.
    J. Fraser, J. Nadeau, J. D. Robertson, and A. J. J. Wood, Regulation of human leukocyte beta receptors by endogenous catecholamines. Relationship of leukocyte beta receptor density to the cardiac sensitivity to isoproterenol, Clin. Invest. 67: 1777 (1984).Google Scholar
  14. 14.
    T. E. Gaffney and E. Braunwald, Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure, Am. Med. 34: 320 (1963).CrossRefGoogle Scholar
  15. 15.
    R. P. Gilbert, Mechanisms of the hemodynamic effects of endotoxin, Physiol. Rev. 40: 245 (1960).PubMedGoogle Scholar
  16. 16.
    A. G. Gilman, A protein kinase binding assay for adenosine 3′,5′-cyclic monophosphate, Proc. Natl. Acad. Sci. USA 67: 305 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    R. D. Goldfarb, Cardiac dynamics following shock: role of circulating cardiodepressant substances, Circ. Shock 9: 317 (1982).PubMedGoogle Scholar
  18. 18.
    R. D. Goldfarb, W. Tambolini, S. M. Wiener, and P. B. Weber, Caninen left ventricular performance during LD endotoxemia, Am. J. Physiol. 244: H370 (1983).PubMedGoogle Scholar
  19. 19.
    T. K. Harden, Y. F. Su, and J. P. Perkins, Catecholamine-induced desensitization involved in uncoupling beta-adrenergic receptors and adenylate cyclase, J. Cyclic Nucleotide Res. 5: 99 (1979).PubMedGoogle Scholar
  20. 20.
    D. C. Harrison, Effects of beta-blockade on circulatory dynamics, in: “Beta-Adrenergic Blockade: A New Era in Cardiovascular Medicine,” E. Braunwald, ed., Excerpta Medica, Amsterdam (1978).Google Scholar
  21. 21.
    M. L. Hess, Subcellular function in the acutely failing myocardium, Circ. Shock 6: 119 (1979).PubMedGoogle Scholar
  22. 22.
    M. L. Hess and S. M. Krause, Contractile protein dysfunction as a determinant of depressed cardiac contractility during endotoxin shock, J. Mol. Cardiol. 12:715 (1981).CrossRefGoogle Scholar
  23. 23.
    M. L. Hess, A. Hastillo, and L. J. Greenfield, Spectrum of cardiovascular function during gram-negative sepsis, Prog. Cardiovascular Dis. 23: 279 (1981).CrossRefGoogle Scholar
  24. 24.
    L. B. Hinshaw, Role of the heart in the pathogenesis of endotoxin shock: a review of the clinical findings and observations on animal species, J. Surg. Res. 17: 134 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    L. B. Hinshaw, L. T. Archer, J. J. Spitzer, M. R. Black, M. D. Peyson, and L. J. Greenfield, Effects of coronary hypotension and endotoxin on myocardial performance, Am. J. Physiol. 227: 1051 (1974).PubMedGoogle Scholar
  26. 26.
    L. B. Hinshaw, B. Benjamin, L. T. Archer, and M. D. Payton, The heart and endotoxin shock, Tex. Rep. Biol. Med. 39: 173 (1979).PubMedGoogle Scholar
  27. 27.
    L. B. Hinshaw, Overview of endotoxin shock, in: “Pathophysiology of Shock, Anoxia and Ischemia,” R. A. Cowley and B. F. Trump, eds., Williams and Wilkins, Baltimore (1982).Google Scholar
  28. 28.
    P. Hjemdahl, M. Daleskog, and T. Kahan, Determination of plasma catecholamines by high-performance liquid chromatography with electro-chemical detection: Comparison with a radioenzymatic method, Life Sciences 25: 131 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    M. J. Hoffman, L. J. Greenfield, H. J. Sugerman, and J. L. Taturm, Unsuspected right ventricular dysfunction in shock and sepsis, Ann. Surg. 198: 307 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    S. B. Jones and F. D. Romano, Plasma catecholamine in the conscious rat during endotoxicosis, Circ. Shock 14: 189 (1984).PubMedGoogle Scholar
  31. 31.
    G. L. Johnson, B. B. Wolfe, T. K. Harden, P. B. Molinoff, and J. P. Perkins, Role of beta-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells, J Biol. Chem. 253: 1472 (1978).PubMedGoogle Scholar
  32. 32.
    A. M. Katz, Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamine: a historic review, Adv. Cyclic Nucleotide Res. 11: 303 (1979).PubMedGoogle Scholar
  33. 33.
    R. S. Kent, A. Delean, and R. J. Lefkowitz, A quantitative analysis of beta adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modelling of ligand binding data, Mol. Pharmacol 17: 14 (1980).PubMedGoogle Scholar
  34. 34.
    J. F. Krall, M. Connelly, and M. L. Tuck, Acute regulation of beta adrenergic catecholamine sensitivity in human lymphocytes, J Pharmacol. Exptl. Ther. 214: 554 (1980).Google Scholar
  35. 35.
    E. Lachman, S. B. Pitsoe, and S. L. Goffin, Anti-lipopolysaccharide immunotherapy in management of septic shock of obstetric and gynaecological origin, Lancet 8384: 981 (1984).CrossRefGoogle Scholar
  36. 36.
    C. H. Lang, G. J. Bagby, and J. J. Spitzer, Glucose kinetics and body temperature after lethal and nonlethal doses of endotoxin, Am. J. Physiol. 248: R000 (1985).Google Scholar
  37. 37.
    A. M. Lefer and M. J. Rovetto, Influence of myocardial depressant factor on physiologic properties of cardiac muscle, Proc. Soc. Exp. Biol. Med. 134: 269 (1970).PubMedGoogle Scholar
  38. 38.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  39. 39..
    J. McCaig, K. A. Kane, G. Bailey, P. F. Millington, and J. R. Parratt, Myocardial function in feline endotoxin shock: a correlation between myocardial contractility, electrophysiology, and ultrastructure, Circ. Shock 6: 201 (1979).PubMedGoogle Scholar
  40. 40.
    K. H. McDonough, C. H. Lang, and J. J. Spitzer, Depressed function of isolated hearts from hyperdynamic, septic rats. Circ. Shock 12; 241 (1984).PubMedGoogle Scholar
  41. 41.
    J. Montini, G. J. Bagby, A. H. Burns, and J. J. Spitzer, Am. J. Physiol. 240: H659 (1981).PubMedGoogle Scholar
  42. 42.
    J. R. Neely, H. Liebermeister, E. J. Battersby, and H. E. Morgan, Effect of pressure development on oxygen consumption by isolated rat heart, Am. J. Physiol. 212: 804 (1967).PubMedGoogle Scholar
  43. 43.
    J. L. Parker and H. R. Adams, Myocardial effects of endotoxin shock: characterization of an isolated heart muscle model, Adv. Shock Res. 2: 163 (1979).PubMedGoogle Scholar
  44. 44.
    J. L. Parker and H. R. Adams, Contractile dysfunction of atrial myocardium from endotoxin-shocked guinea pigs, Am. J. Physiol 240: 11954 (1981).Google Scholar
  45. 45.
    M. Pollack, A. I. Huang, R. K. Prescott, L. S. Young, K. W. Hunter, D. F. Cruess, and C.-M. Tsai, Enhanced survival in Pseudomonas aeruginosa septicemia associated with high levels of circulating antibody to E. coli endotoxin core, Clin. Invest. 72: 1874 (1983).CrossRefGoogle Scholar
  46. 46.
    J. Postel and P. R. Schloerb, Cardiac depression in bacteremia, Ann. Surg. 186: 74 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Raffa and D. D. Trunkey, Myocardial depression in sepsis, J. Trauma 18: 617 (1978).PubMedCrossRefGoogle Scholar
  48. 48.
    E. Remold-O’Donnell, Stimulation and desensitization of macrophage adenylate cyclase by prostaglandins and catecholamines, Biol. Chem. 249: 3615 (1974).Google Scholar
  49. 49.
    G. A. Robison, R. W. Butcher, I. Oye, H. E. Morgan, and E. W. Sutherland, The effect of epinephrine on adenosine 3′,5′-phosphate levels in isolated perfused rat heart, Mol. Pharmacol. 1: 168 (1965).PubMedGoogle Scholar
  50. 50.
    A. J. Romanosky, A. H. Burns, and R. E. Shepherd, In vitro myocardial performance following in vivo administration of E. coli endotoxin, Fed. Proc. 42:608 (1983).Google Scholar
  51. 51.
    E. M. Ross and A. G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    G. Scatchard, The attractions of proteins for small molecules and ions, Ann. N.Y Acad. Sci. 51: 660 (1949).CrossRefGoogle Scholar
  53. 53.
    M. Shear, P. Insel, K. L. Melmon, and P. Coffino, Agonist specific refractoriness induced by isoproterenol. Studies with mutant cells, J. Biol. Chem. 251: 7572 (1976).PubMedGoogle Scholar
  54. 54.
    R. E. Shepherd, K. H. McDonough, and A. H. Burns, Mechanism of cardiac dysfunction in hearts from endotoxin-treated rats, Circ. Shock 13: 95 (1984).Google Scholar
  55. 55.
    J. H. Siegel, F. B. Cerra, B. Coleman, I. Giocannini, M. Shetye, J. R. Border, and R. H. McMenamy, Physiological and metabolic correlation in human sepsis, Surgery 86: 163 (1979).PubMedGoogle Scholar
  56. 56.
    J. F. Spann, E. H. Sonneblick, T. Cooper, C. A. Chidsey, V. L. William, and E. Braunwald, Cardiac norepinephrine stores and the contractile state of heart muscle, Circ. Res. 19: 317 (1966).PubMedGoogle Scholar
  57. 57.
    J. J. Spitzer, Studies of substrate metabolism in isolated myocytes, in: “Myocardial Injury,” J. J. Spitzer, ed., Plenum Publishing Corporation, New York (1983).CrossRefGoogle Scholar
  58. 58.
    G. L. Stiles, M. G. Caron, and R. J. Lefkowitz, Beta-adrenergic receptors: biochemical mechanisms of physiological regulation, Physiol. Rev. 64: 661 (1984).PubMedGoogle Scholar
  59. 59.
    T. E. Temples, A. H. Bums, F. C. Nance, and H. I. Miller, Effect of burn shock on myocardial function in guinea pigs, Circ. Shock 14: 81 (1984).PubMedGoogle Scholar
  60. 60.
    C. S. Thomas, M. A, Melly, M. G. Koenig, and S. K. Brockman, The hemodynamic effects of viable gram-negative organisms, Surg. Gynecol. Obstet. 128: 753 (1969).PubMedGoogle Scholar
  61. 61.
    J. P. Weisul, T. F. O’Donnell, M. A. Stone, and G. H. Clowes, Myocardial performance in clinical septic shock: effects of isoproterenol and glucose potassium insulin, J. Surg, Reg, 18: 357 (1975).CrossRefGoogle Scholar
  62. 62.
    E. J. Winslow, H. S. Loeb, S. Kamath, and R. M. Gunnar, Hemodynamic studies and results of therapy in 50 patients with bacteremic shock, Am. J. Med. 54: 421 (1973).PubMedCrossRefGoogle Scholar
  63. 63.
    E. J. Ziegler, J. A. McCutchan, J. Furer, M. P. Glauser, J. C. Scadoff, H. Douglas, and A. I. Braude, Treatment of gram-negative bacteremia and shock with human antiserum to mutant Escherichia coli, N. Eng. J. Med. 307: 1225 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Raymond E. Shepherd
    • 1
  • Charles H. Lang
    • 1
  • Brent A. Brumfield
    • 1
  • Norman W. Robie
    • 2
  • Karen R. DuSapin
    • 2
  • Kathleen H. McDonough
    • 1
  1. 1.Departments of PhysiologyLouisiana State University Medical CenterNew OrleansUSA
  2. 2.Pharmacology and Experimental TherapeuticsLouisiana State University Medical CenterNew OrleansUSA

Personalised recommendations