Skip to main content

The Evolution of the Mechanisms of Frequency Selectivity in Vertebrates

  • Chapter
Auditory Frequency Selectivity

Part of the book series: Nato ASI Series ((NSSA,volume 119))

Abstract

Modern vertebrates display an almost bewildering variety of inner-ear structure and function. Any attempt to understand this variety must begin with a search for unifying principles. Evolution is, without question, the most important unifying principle in the biological sciences. Features of the physiology, ontogeny, comparative morphology and comparative physiology of hearing systems provide an indispensable framework for correctly interpreting the significance of functional differences between individual structural types. All vertebrate hair-cell systems are frequency selective, presumably due to early selection pressures for distinguishing different signals by means of their spectral content. In addition, all systems are tonotopically organized. This paper attempts to emphasize the existence of more than one mechanism of frequency selectivity in vertebrate auditory receptors and to interpret the changes which have occurred in the evolution of the inner ear of terrestrial vertebrates with respect to frequency selectivity. A paper of this length prohibits the development of a detailed review. Where possible, reference is made to review articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brownell, W.E. and Kachar, B. (1985). Outer hair cell motility: a possible electro-kinetic mechanism, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1980). The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol., 306, 79–125.

    PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1981). Non-linearities in the responses of turtle hair cells, J. Physiol., 315, 317–338.

    PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1985). The mechanical properties of ciliary bundles of turtle cochlear hair cells, J. Physiol., 364, 359–379.

    PubMed  CAS  Google Scholar 

  • Eatock, R.A. and Manley, G.A. (1981). Auditory-nerve fibre activity in the Tokay gecko. II. Temperature effect on tuning, J. Comp. Physiol., 142, 219–226.

    Article  Google Scholar 

  • Ehret, G. (1977). Comparative psychoacoustics: perspectives of peripheral sound analysis in mammals, Naturwiss., 64, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Gummer, A.W., Smolders, J.W.Th. and Klinke, R. (1985). The mechanics of the basilar membrane and middle ear in the pigeon, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Hillery, C.M. and Narins, P.M. (1984). Neurophysiological evidence for a traveling wave in the amphibian inner ear, Science, 225, 1037–1039.

    Article  PubMed  CAS  Google Scholar 

  • Holton, T. and Weiss, T.F. (1983). Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea, J. Physiol., 345, 241–260.

    PubMed  CAS  Google Scholar 

  • Hopkins, C.D . (1976). Stimulus filtering and electroreception: Tuberous electroreceptors in three species of gymnotid fish, J. Comp. Physiol. A. 111, 171–207.

    Article  Google Scholar 

  • Hudspeth, A.J. (1985). The cellular basis of hearing: The biophysics of hair cells, Science, 230, 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.O . (1985). An overview of nonlinear and active cochlear models, in:

    Google Scholar 

  • Klinke, R. and Schermuly, L. (1985). Inner-ear mechanics of the crocodilian and avian basilar papillae in comparison to neuronal data, Hearing Res., in press.

    Google Scholar 

  • Kössl, M. and Vater, M. (1985). The cochlear frequency map of the moustache bat, Pteronotus parnelli, J. Comp. Physiol. A, 157, 687–697.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.R., Leverenz, E.L. and Bialek, W.S. (1985). The Vertebrate Inner Ear, CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Liberman, M.C. (1982). The cochlear frequency map for the cat: labelling auditory-nerve fibres of known characteristic frequency, J. Acoust. Soc. Am., 72, 1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • Manley, G.A . (1981). A review of the auditory physiology of the reptiles, Prog. Sens. Physiol., 2, 49–134.

    Article  Google Scholar 

  • Manley, G.A., Gleich, O., Leppelsack, H.-J. and Oeckinghaus, H. (1985). Activity patterns of cochlear ganglion neurones in the starling, J. Comp. Physiol. A., 157, 161–181.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M.R. (1980). The reptilian cochlear duct, in: Comparative studies of hearing in vertebrates, A.N. Popper and R.R. Fay, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Miller, M.R . (1985). Quantitative studies of auditory hair cells and nerves in lizards, J. Comp. Neurol., 232, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Mountain, D.C. (1985). Active filtering by hair cells, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Robertson, D., Cody, A.R., Bredberg, G. and Johnstone, B.M. (1980). Response properties of spiral ganglion neurones in cochleas damaged by direct mechanical trauma, J. Acoust. Soc. Am., 67, 1295–1303.

    Article  PubMed  CAS  Google Scholar 

  • Russell, I.J. and Cody, A.R. (1985). Transduction in cochlear hair cells, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Russell, I.J., Richardson, G.P. and Cody, A.R. (1986). Mechanosensitivity of mammalian auditory hair cells in vitro, Nature, 321, 517–519.

    Article  PubMed  CAS  Google Scholar 

  • Strelioff, D. (1985). Role of passive mechanical properties of outer hair cells in determination of cochlear mechanics, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag, Berlin.

    Google Scholar 

  • Suga, N. (1967). Electrosensitivity of specialized and ordinary lateral line organs of the electric fish Gymnotus carapo, in: Lateral Line Detectors, P. Cahn, ed., Indiana Univ. Press, Bloomington.

    Google Scholar 

  • Turner, R.G., Muraski, A.A. and Nielsen, D.W. (1981). Cilium length: influence on neural tonotopic organization, Science, 213, 1519–1521.

    Article  PubMed  CAS  Google Scholar 

  • Vater, M. Feng, A.S. and Betz, M. (1985). An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band, J. Comp. Physiol A., 157, 671–686.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T.F., Mulroy, M.J., Turner,R.G. and Pike, C.L. (1976). Tuning of single fibres in the cochlear nerve of the alligator lizard: relation to receptor morphology, Brain Res., 115, 71–90.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T.F., Peake, W.T. and Rosowski, J.J. (1985). A model for signal transmission in an ear having hair cells with free-standing stereo- cilia. I. Empirical basis for model structure, Hearing Res., 20, 131–138.

    Article  CAS  Google Scholar 

  • Wilson, J.P. (1985). The influence of temperature on frequency-tuning mechanisms, in: Peripheral auditory mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer Verlag,

    Google Scholar 

  • Zwicker, E. (1979). A model describing nonlinearities in hearing by active processes with saturation at 40 dB, Biol. Cybernetics, 35, 243–250.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Manley, G.A. (1986). The Evolution of the Mechanisms of Frequency Selectivity in Vertebrates. In: Moore, B.C.J., Patterson, R.D. (eds) Auditory Frequency Selectivity. Nato ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2247-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2247-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9316-3

  • Online ISBN: 978-1-4613-2247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics