Skip to main content

The Effects of Temperature on Otoacoustic Emission Tuning Properties

  • Chapter
Auditory Frequency Selectivity

Part of the book series: Nato ASI Series ((NSSA,volume 119))

Abstract

There is increasing evidence that different classes of animals use different frequency tuning mechanisms. Recent measurements in mammals (Khanna and Leonard, 1982; Sellick et al., 1982; Robles et al., 1985) indicate that the basilar membrane is sharply tuned and imply that the inner hair cell may be simply an untuned transducer of this motion into neural excitation. The sharp tuning of the basilar membrane, however, would appear to arise from a combination of poorly-tuned passive mechanics with an active positive feedback mechanism (Gold, 1947) probably associated with the outer hair cells (Mountain, 1980). At the other extreme, electroreceptors in weakly electric fish also demonstrate sharp tuning presumably due to electrical resonance of hair cells (Hopkins, 1976, Bass and Hopkins, 1984). Although electrical tuning has been demonstrated in the bullfrog sacculus (Lewis and Hudspeth, 1983) and in the turtle ear (Crawford and Fettiplace, 1981) there is now evidence that the latter has a mechanical correlate (Crawford and Fettiplace, 1985). Other species appear to utilise micromechanical processes of various types. Suggested mechanisms include mechanical resonance of the stereocilia bundle (Turner et al., 1981; Khanna, 1983; Freeman and Weiss, 1985), mechanical resonance of segments of the basilar papilla/organ of Corti (Holton and Hudspeth, 1983; Wilson, 1977), and mechanical resonance of the tectorial membrane (Allen, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, J.B. (1977). Cochlear mieromechanics - a mechanism for transforming mechanical to neural tuning within the cochlea, J. Acoust. Soc. Am., 62, 930–939.

    Google Scholar 

  • Bass, A.H. and Hopkins, C.D. (1984). Shifts in frequency tuning of electroreceptors in androgen-treated mormyrid fish, J. Comp. Physiol. A, 155, 713–724.

    Article  CAS  Google Scholar 

  • Brzoska, J., Walkowiak, W. and Schneider, H. (1977). Acoustic communication in the grass frog (Rana temporaria L.): Calls, auditory thresholds and behavioural responses, J. Comp. Physiol. A, 118, 173–186.

    Article  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1981). An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol., 312, 377–412.

    PubMed  CAS  Google Scholar 

  • Crawford, A.C. and Fettiplace, R. (1985). The mechanical properties of ciliary bundles of turtle cochlear hair cells, J. Physiol., 364, 359–379.,

    PubMed  CAS  Google Scholar 

  • Eatock, R.A. and Manley, G.A. (1976). Temperature effects on single auditory nerve fiber responses, J. Acoust. Soc. Am., 60, S80.

    Article  Google Scholar 

  • Eatock, R.A. and Manley, G.A. (1981). Auditory nerve fibre activity in the Tokay gecko: II. Temperature effect on tuning, J. Comp. Physiol., 142, 219–226.

    Article  Google Scholar 

  • Emde, C. and Klinke, R. (1977). Does absolute pitch depend on an internal clock? In: Inner Ear Biology, M. Portmann and J.M. Aran, eds., INSERM, Paris, 68, 145–146.

    Google Scholar 

  • Feng, A.S., Narins P.M. and Capranica, R. (1975). Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities, J. Comp. Physiol. A, 100, 221–229.

    Article  Google Scholar 

  • Freeman, D.M. and Weiss, T.F. (1985). On the role of fluid inertia and viscosity in stereociliary tuft motion: analysis of isolated bodies of regular geometry, In: Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer-Verlag, N.Y., pp. 147–154

    Google Scholar 

  • Geisler, C.D., van Bergeijk, W.A. and Frischkopf, L.S. (1964). The inner ear of the bullfrog, J. Morphol., 114, 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Gelder, J.J. van, Evers, P.M.G. and Maagnus, G.J.M. (1978). Calling and associated behaviour of the common frog, Rana temporaria, during breeding activity, J. Anim. Ecol., 47, 667–676.

    Article  Google Scholar 

  • Gerhardt, H.C. and Mudry, K.M. (1980). Temperature effects on frequency preferences and mating call frequencies in the green treefrog, Hyla cinerea (Anura, Hylidae ), J. Comp. Physiol., 137, 1–6

    Article  Google Scholar 

  • Gold, T. (1948). Hearing II: The physical basis of the action of the cochlea, Proc. Roy. Soc. B, 135, 492–498.

    Article  Google Scholar 

  • Gummer, A.W. and Klinke, R. (1983). Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus, Hearing Res., 12, 367–380.

    Article  CAS  Google Scholar 

  • Gummer, A.W., Smolders, J.W.Th. and Klinke, R. (1985). The mechanics of the basilar membrane and middle ear in the pigeon, In: Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer-Verlag, New-York, 81–88.

    Google Scholar 

  • Hillery, C.N. and Narins, P.M. (1984). Neurophysiological evidence for a traveling wave in the amphibian inner ear, Science, 225, 1037–1039.

    Article  PubMed  CAS  Google Scholar 

  • Holton, T. and Hudspeth, A.J. (1983). A micromechanical contribution to cochlear tuning and tonotopic organisation, Science, 222, 508–510.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, C.D. (1976). Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish, J. Comp. Physiol. A, 111, 171–207.

    Article  Google Scholar 

  • Hubl, L. and Schneider, H. (1979). Temperature and auditory thresholds: bioacoustic studies of the frogs Rana r. ridibunda, Hyla a. arbórea and Hyla a. savignyi, J. Comp. Physiol. A, 130, 17–27.

    Article  Google Scholar 

  • Khanna, S.M. (1983). Interpretation of the sharply tuned basilar membrane response observed in the cochlea, In: Hearing and Other Senses, R.R. Fay and G. Gourevitch, eds., Amphora Press, Groton CT, pp. 65–86.

    Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea, Science, 215, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.O., Neely, S.T., Molnar, C.E. and Matthews, J.W. (1980). An active cochlear model with negative damping within the partition, In: Psychophysical Physiological and Behavioural Studies in Hearing, van den Brink, G. and Bilsen, F.A., eds., Delft Univ. Press, pp. 7–14.

    Chapter  Google Scholar 

  • Klinke, R. and Smolders, J. (1977). Effect of temperature shift on tuning properties, In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson, eds., Academic Press, Lond., pp. 109–112.

    Google Scholar 

  • Kossl, M. and Vater, M. (1985). Evoked acoustic emissions and cochlear emissions in the moustache bat, Pteronotus parnellii, Hearing Res., 19, 157–170.

    Article  CAS  Google Scholar 

  • Lewis, R.S. and Hudspeth A.J. (1983). Voltage and ion-dependent conductances in solitary vertibrate hair cells, Nature, 304, 538–541.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, A.J.M. and Capranica, R.R. (1976). Effects of temperature on the response properties of auditory nerve fibers in the American toad ( Bufo americanus ), J. Acoust. Soc. Am., 60, S80.

    Article  Google Scholar 

  • Mountain, D.C. (1980). Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics, Science, 210 71–71.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A.R. and Wilson, J.P. (1982). Spontaneous and evoked acoustic emissions in the frog Rana esculenta, J. Physiol., 324, 66 P.

    Google Scholar 

  • Robles, L., Ruggero, M.A. and Rich, N.C. (1985). MBssbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea, In: Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis. eds., Springer-Verlag, N.Y., pp. 121–128.

    Google Scholar 

  • Schermuly, L. and Klinke, R. (1985). Change of characteristic frequency of pigeon primary auditory afferents with temperature, J. Comp. Physiol. A 156, 209–211.

    Article  Google Scholar 

  • Sellick, P.M., Patuzzi, R. and Johnstone, B.M. (1982). Measurement of basila: membrane motion in guinea pig using the Mossbauer technique, J. Acoust. Soc. Am., 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Smolders, J. and Klinke, R. (1984). Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.), J. Comp. Physiol., 155, 19–30.

    Article  Google Scholar 

  • Strack, G., Klinke, R. and Wilson, J.P. (1981). Evoked cochlear responses in Caiman crocodilus, Pflllgers Arch. Suppl., 391, R43.

    Google Scholar 

  • Turner, R.G., Muraski, A.A. and Nielsen, D.W. (1981). Cilium length: Influence on neural tonotopic organisation, Science, 213, 1519–1521.

    Article  PubMed  CAS  Google Scholar 

  • Walkowiak, W. (1980). The coding of auditory signals in the torus semicircularis of the fire-bellied toad and the grass frog: responses tc simple stimuli an conspecific calls, J. Comp. Physiol. A, 138, 131–148.

    Google Scholar 

  • Weiss, T.F., Peake, W.T., Ling, A. and Holton, T. (1978). Which structures determine frequency selectivity and tonotopic organisation of vertibrat cochlear nerve fibres? In: Evoked Electrical Activity in the Auditory Nervous System, R. Naunton and C. Fernandez, eds., Academic Press, N.Y. 3 pp. 9–112.

    Google Scholar 

  • Wilson, J.P. (1977). Towards a model for cochlear frequency analysis, In: Psychophysics and Physiology of Hearing, E.F. Evans and J.P. Wilson, eds., Academic Press, Lond., pp. 115–124.

    Google Scholar 

  • Wilson, J.P. (1980). Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus, Hear. Res., 2, 233–252.

    Google Scholar 

  • Wilson, J.P. (1984). Otoacoustic emissions and hearing mechanisms, Rev. Laryngol., 105, (2) Suppl., 179–191.

    Google Scholar 

  • Wilson, J.P. (1985). The influence of temperature on frequency-tuning mechanisms, In: Peripheral Auditory Mechanisms, J.B. Allen, J.L. Hall, A. Hubbard, S.T. Neely and A. Tubis, eds., Springer-Verlag, N.Y., pp. 229–236.

    Google Scholar 

  • Wilson, J.P., Smolders, J.W.T. and Klinke, R. (1985). Mechanics of the basilar membrane in Caiman crocodilus, Hear. Res., 18, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.P. and Sutton, G.J. (1981). Acoustic correlates of tonal tinnitus, In: Tinnitus, D. Evered and G. Lawrensoh, eds., Pitman Medical, Lond., 82–107.

    Google Scholar 

  • Johnstone, J.R. and Johnstone, B.M. (1969a). Electrophysiology of the lizard cochlea, Exp. Neurol., 24, 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, J.R. and Johnstone, B.M. (1969b). Unit responses from the lizard auditory nerve, Exp. Neurol., 24, 528–537.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.R. and Leverenz, E.L. (1983). Morphological basis for tonotopy in the anuran amphibian papilla, Scan. Electr. Microsc., 189–200.

    Google Scholar 

  • Lewis, E.R., Leverenz, E.L. and Koyama, H. (1982). The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane, J. Comp. Physiol., 145, 437–445.

    Article  Google Scholar 

  • Feng, A.S., Narins, P.M. and Capranica, R.R. (1975). Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities, J. Comp. Physiol., 100, 221–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Whitehead, M.L., Wilson, J.P., Baker, R.J. (1986). The Effects of Temperature on Otoacoustic Emission Tuning Properties. In: Moore, B.C.J., Patterson, R.D. (eds) Auditory Frequency Selectivity. Nato ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2247-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2247-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9316-3

  • Online ISBN: 978-1-4613-2247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics