Strategies for the Representation of Broadband Stimuli in the Discharge Patterns of Auditory-Nerve Fibers

  • Michael I. Miller
Part of the Nato ASI Series book series (NSSA, volume 119)

Abstract

Our work (Miller and Sachs, 1983, 1984) suggests that representations based on the temporal discharges of auditory-nerve fibers may be important for the coding of complex acoustic stimuli. If the information encoded via these temporal discharges is important for auditory processing tasks, then the following questions must be resolved. (1) How should the array of auditory-nerve fiber responses be combined? For example, should the strategy for representing a formant in a vowel stimulus be to derive estimates of that formant from discharges of the entire population of auditory-nerve fibers? (2) Do these strategies change for narrow and broadband stimuli? (3) What role does cochlear filtering play in these temporal representations?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein, J. L. (1973). An optimum processor theory for the central formation of the pitch of complex tones, J. Acoust. Soc. Am., 54, 1381–1403.Google Scholar
  2. Hoekstra, A, (1979). Frequency Discrimination and Frequency Analysis in Hearing, Ph.D. Thesis, University of Groningen.Google Scholar
  3. Miller, M. I. (1983). The Statistical Coding of Simple Tones and Con- sonarit-Vowel Syllables in the Auditory Nerve, Ph.D. Thesis, The Johns Hopkins University, Baltimore, Maryland. Supervised by Murray B. Sachs.Google Scholar
  4. Miller, M. I. and Sachs, M. B. (1983). Representation of stop consonants in the discharge patterns of auditory-nerve fibers, J. Acoust. Soc. Am., 74, 502–517.PubMedCrossRefGoogle Scholar
  5. Miller, M. I. and Sachs, M. B. (1984). Representation of voiced-pitch in the discharge patterns of auditory nerve fibers, Hearing Research, 14, 257–279.PubMedCrossRefGoogle Scholar
  6. Miller, M. I., Barta, P. E., and Sachs, M. B. (in review). Strategies for the representation of a tone in background noise in temporal aspects of the discharge patterns of auditory-nerve fibers, J. Acoust. Soc. Am.Google Scholar
  7. Moore, B. C. J. (1973). Frequency difference limens for short-duration tones, J. Acoust. Soc. Am., 54, 610–619.PubMedCrossRefGoogle Scholar
  8. Siebert, W. M. (1968). Stimulus transformations in the peripheral auditory system, in: Recognizing Patterns, P. A. Köhlers and M. Eden, eds., M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  9. Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or periodicity mechanisms, Proc. I.E.E.E., 58, 723–730.Google Scholar
  10. Srulovicz, P. and Goldstein, J. L. (1983). A central spectrum model: A synthesis of auditory-timing and placé cues in monaural communication of frequency spectrum, J.. Acoust. Soc. Am., 273, 1266–1278.CrossRefGoogle Scholar
  11. Young, E. D. and Sachs, M. B. (1979). Representation of steady state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve-fibers, J. Acoust. Soc. Am., 66, 1381–1403.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael I. Miller
    • 1
  1. 1.Department of Electrical Engineering and The Institute for Biomedical ComputingWashington UniversitySt. LouisUSA

Personalised recommendations