Chromatin Structure and Protein-DNA Interactions in the 5′-Flanking Region of the Chicken Lysozyme Gene

  • Albrecht E. Sippel
  • Joachim Nowock
  • Manfred Theisen
  • Uwe Borgmeyer
  • Ute Strech-Jurk
  • Conny Bonifer
  • Tibor Igo-Kemenes
  • Hans P. Fritton

Abstract

The exact mechanisms which ensure that a eukaryotic gene is expressed at a specific time in a specific cell are presently unknown. It is, however, generally assumed that the structural organization of chromatin determines the state of differentiation and activity of eukaryotic genes. Our work is aimed at understanding the molecular details of the processes which prepare genes to be differentially and coordinately expressed.

Keywords

Cellulose Filtration Estrogen Cadmium Agarose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgmeyer, U., Nowock, J., and Sippel, A.E., 1984, The TGGCA-binding protein: a eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA, Nucl. Acids Res. 12: 4295.PubMedCrossRefGoogle Scholar
  2. Brown, D., 1984, The role of stable complexes that repress and activate eukaryotic genes, Cell 37: 359.PubMedCrossRefGoogle Scholar
  3. Burch, J.B.E. and Weintraub, H., 1983, Temporal order of chromatin structural changes associated with activation of the major chicken vitellogenin gene. Cell 33: 65.PubMedCrossRefGoogle Scholar
  4. Compton, J.G., Schräder, W.T., and O’Malley, B.W., 1983, DNA sequence preference of the progesterone receptor, Proc. Natl. Acad. Sci. USA 80: 16.PubMedCrossRefGoogle Scholar
  5. Davison, B.L., Egly, J.-M., Mulvihill, E.R., and Chambon, P., 1983, Formation of stable preinitiation complexes between eukaryotic class B transcription factor and promoter sequences, Nature 301: 680.PubMedCrossRefGoogle Scholar
  6. Fritton, H.P., Sippel, A.E., and Igo-Kemenes, T., 1983, Nuclease hypersensitive sites in the chromatin domain of the chicken lysozyme gene, Nucl. Acids Res. 11: 3467.PubMedCrossRefGoogle Scholar
  7. Fritton, H.P., Igo-Kemenes, T., Nowock, J., Strech-Jurk, U., Theisen, M., and Sippel, A.E., 1984, Alternative sets of DNase I-hyper-sensitive sites characterize the various functional states of the chicken lysozyme gene, Nature 311: 163.PubMedCrossRefGoogle Scholar
  8. Gilbert, W., 1978, Why genes in pieces? Nature 271: 501.PubMedCrossRefGoogle Scholar
  9. Grez, M., Land, H., Giesecke, K., Schütz, G., Jung, A., and Sippel, A.E., 1981, Multiple mRNAs are generated from the chicken lysozyme gene. Cell 25: 743.PubMedCrossRefGoogle Scholar
  10. Hauser, H., Graf, T., Beug, H., Greiser-Wilke, I., Lindenmaier, W., Grez, M., Land, H., Giesecke, K., and Schütz, G., Structure of the lysozyme gene and expression in the oviduct and macrophages, in: “Haematology and Blood Transfusion,” Vol. 26, R. Neth, R.C. Gallo, T. Graf, K. Mannweiler, and K. Winkler, eds., Springer, Berlin (1981).Google Scholar
  11. Hynes, N.E., Groner, B., Sippel, A.E., Jeep, S., Wurtz, T., NguyenHuu, M.C., Giesecke, K., and Schütz, G., 1979, Control of cellular content of chicken egg white protein specific RNA during estrogen administration and withdrawal, Biochemistry 18: 616.PubMedCrossRefGoogle Scholar
  12. Hynes, N., van Ooyen, A.J.J., Herrlich, P., Ponta, H., and Groner, B 1983, Subfragments of the large terminal repeat cause gluco-corticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc. Natl. Acad. Sci. USA 80: 3637.PubMedCrossRefGoogle Scholar
  13. Karin, M., Haslinger, A., Holtgreve, H., Richards, R.I., Krauter, P. Westphal, H.M., and Beato, M., 1984, Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein IIA gene, Nature 308: 513.Google Scholar
  14. McGhee, J.K., Wood, W.I., Dolan, M., Engel, J.D., and Felsenfeld, G. 1981, A 200 base pair region at the 5’ end of the chicken adult ß-globin gene is accessible to nuclease digestion, Cell 27: 45.PubMedCrossRefGoogle Scholar
  15. Nedospasov, S.A. and Georgiev, G.P., 1980, Non-random cleavage of SV40 DNA in the compact mini-chromosome and free in solution by micrococcal nuclease, Biochem. Biophys. Res. Commun. 92: 532.PubMedCrossRefGoogle Scholar
  16. Nowock, J. and Sippel, A.E., 1982, Specific protein-DNA interaction at four sites flanking the chicken lysozyme gene, Cell 30: 607PubMedCrossRefGoogle Scholar
  17. Nowock, J., Borgmeyer, U., Püschel, A.W., Rupp, R.A.W., and Sippel, A.E., 1985, The TGGCA protein binds to the MMTV LTR, the adenovirus origin of replication and the BK virus enhancer, submitted.Google Scholar
  18. Pabo, C.O. and Sauer, R.T., 1984, Protein-DNA recognition, Ann. Rev. Biochem. 53: 293.PubMedCrossRefGoogle Scholar
  19. Palmiter, R., 1972, Regulation of protein synthesis in chick oviduct I. Independent regulation of ovalbumin, conalbumin, ovomucoid and lysozyme induction, J. Biol. Chem. 274: 6450.Google Scholar
  20. Payvar, F., DeFranco, D., Firestone, G.L., Edgar, B., Wrange, Ö., Okret, S., Gustafsson, J.-A., and Yamamoto, K.R., 1983, Sequence-specific binding of the glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region, Cell 35: 381.PubMedCrossRefGoogle Scholar
  21. Renkawitz, R., Schütz, G., von der Ahe, D., and Beato, M., 1984, Sequences in the promoter region of the chicken lysozyme gene required for steroid regulation and receptor binding, Cell 37: 503.PubMedCrossRefGoogle Scholar
  22. Scheidereit, C., Geisse, S., Westphal, H.M., and Beato, M., 1983, The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus, Nature 304: 749.PubMedCrossRefGoogle Scholar
  23. Schütz, G., Nguyen-Huu, M.C., Giesecke, K., Hynes, N.E., Groner, B., Wurtz, T., and Sippel, A.E., 1978, Hormonal control of egg white protein messenger RNA synthesis in the chicken oviduct. Cold Spring Harbor Symp. Quant. Biol. 42: 617.PubMedGoogle Scholar
  24. Sippel, A.E., Nguyen-Huu, M.C., Lindenmaier, W., Blin, N., Lurz, R., Hauser, H., Giesecke, K., Land, H., Grez, M., and Schütz, G., Mechanism of induction of egg white protein by steroid hor-mones, in: “Steroid induced uterine proteins,” M. Beato, ed., Elsevier/North-Holland Biomedical Press, Amsterdam, New York (1980).Google Scholar
  25. Sippel, A.E. and Nowock, J., The gene for chicken lysozyme: Structure and expression, in: “Biochemistry of Differentiation and Morphogenesis, 33rd Colloquium - Mosbach,” L. Jaenicke, ed., Springer-Verlag, Berlin, Heidelberg (1982).Google Scholar
  26. Sippel, A.E., The egg white protein genes, in: “Eukaryotic Genes: Their Structure, Activity and Regulation,” N. McLean, S.O. Gregory, and R.A. Flavell, eds., Butterworths, London (1983).Google Scholar
  27. Witte, V., 1984, Mittelrepetitive Sequenzelemente in der Region des Gens für Hühnerlysozym, Diploma thesis, University of Cologne.Google Scholar
  28. Wu, C., 1980, The 5’ ends of Drosophila heat shock genes in the chromatin are hypersensitive to DNAase I, Nature 286: 854.PubMedCrossRefGoogle Scholar
  29. Yamamoto, K.R. and Alberts, B.M., 1976, Steroid receptors: elements for modulation of eukaryotic transcription, Ann. Rev. Biochem. 45: 721.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Albrecht E. Sippel
    • 1
  • Joachim Nowock
    • 1
  • Manfred Theisen
    • 1
  • Uwe Borgmeyer
    • 1
  • Ute Strech-Jurk
    • 1
  • Conny Bonifer
    • 1
  • Tibor Igo-Kemenes
    • 2
  • Hans P. Fritton
    • 2
  1. 1.Zentrum für Molekulare Biologie der Universität (ZMBH)HeidelbergGermany
  2. 2.Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der UniversitätGoethestraße 33München 2Germany

Personalised recommendations