Advertisement

Tailoring of the Thermal Transport Properties and Thermal Shock Resistance of Structural Ceramics

  • D. P. H. Hasselman

Abstract

A survey is presented of the approaches which can be taken in the modifications of the thermal transport properties and thermal shock resistance of structural ceramics, Experimental data are presented which indicate that the thermal conductivity and thermal diffusivity as well as their dependence on temperature, are strongly affected by alloying and impurity elements and structural defects, and the presence of second phase dispersions including porosity and microcrack formation. Time-dependent effects such as crack closure and healing, and changes in crystallinity are shown to play a significant role as well. All these mechanisms, in principle, should allow enhancement of heat conduction as well as thermal insulating ability as governed by design requirements.

Thermal shock resistance can be improved by appropriate modifications of those properties which affect the magnitude of thermal stress and corresponding failure criteria as well as by control over the nature and extent of crack propagation, Microcracking is singled out as a highly effective mechanism for simultaneously improving thermal shock resistance as well as thermal insulating ability.

Keywords

Thermal Conductivity Thermal Diffusivity Thermal Shock Resistance Structural Ceramic Volumetric Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. H. Hasselman, J. Amer. Ceram. Soc. 52 (1969) 600.CrossRefGoogle Scholar
  2. 2.
    W. D. Kingery, J. Amer. Ceram. Soc. 38 (1955) 3.CrossRefGoogle Scholar
  3. 3.
    D. P. H. Hasselman, Bull. Amer. Ceram. Soc. 49 (1970) 1933.Google Scholar
  4. 4.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd. Ed. Clarendon Press, Oxford (1960).Google Scholar
  5. 5.
    C. Kittel, Introduction to Solid State Physics, 2nd. Ed. John Wiley, New York (1962).Google Scholar
  6. 6.
    R. Berman, Thermal Conduction in Solids. Clarendon Press, Oxford (1976)Google Scholar
  7. 7.
    w. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd. Ed. John Wiley, New York (1976).Google Scholar
  8. 8.
    L. Rayleigh, Phil. Mag. 34 (1892) 481.Google Scholar
  9. 9.
    J. C. Maxwell, A. Treatise on Electricity and Magnetism, 1, 3rd. Ed. Oxford University Press (1904).Google Scholar
  10. 10.
    D. A. G. Bruggeman, Annalen Physik 24 (1935) 636.CrossRefGoogle Scholar
  11. 11.
    A. E. Powers, Conductivity in Aggregates, Knolls Atomic Power Laboratory Report-2145, General Electric Corp. (1961).Google Scholar
  12. 12.
    Z. Hashin, J. Comp. Mat. 2 (1968) 284.CrossRefGoogle Scholar
  13. 13.
    S. C. Cheng and R. I. Vachan, Int. J. Heat and Mass Transfer, 12 (1969) 249.CrossRefGoogle Scholar
  14. 14.
    D. P. H. Hasselman, J. Comp. Mat. 12 (1978) 403.CrossRefGoogle Scholar
  15. 15.
    W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, J. Appl. Phys. 32 (1961) 1679.CrossRefGoogle Scholar
  16. 16.
    H. J. Siebeneck, W. P. Minnear, R. C. Bradt and D. P. H. Hasselman, J. Amer. Ceram. Soc. 59 (1976) 84.CrossRefGoogle Scholar
  17. 17.
    B. Abeles, Phys. Rev. 131 (1963) 1906.CrossRefGoogle Scholar
  18. 18.
    F. F. Lange, H. J. Siebeneck and D. P. H. Hasselman, J. Amer. Ceram. Soc. 59 (1976) 454.CrossRefGoogle Scholar
  19. 19.
    D. W. Lee and W. D. Kingery, J. Amer. Ceram. Soc. 43 (1960) 594.CrossRefGoogle Scholar
  20. 20.
    J. E. Matta and D. P. H. Hasselman, J. Amer. Ceram. Soc. 58 (1975) 458.CrossRefGoogle Scholar
  21. 21.
    G. A. Slack, J. Appl. Phys. 35 (1964) 3460.CrossRefGoogle Scholar
  22. 22.
    M. Srinivasan, L. D. Bentsen, D. P. H. Hasselman, pp. 877–87 in Thermal Conductivity 17. Ed. by J. G. Hust, Plenum Press (1983).Google Scholar
  23. 23.
    M. Ura and O. Asai, F. C. Report Vol. 1, No. 4, Japan Fine Ceramics Ass., Tokyo, Japan (1984).Google Scholar
  24. 24.
    K. Chyung, G. E. Youngblood and D. P. H. Hasselman, J. Amer. Ceram. Soc. 61 (1978) 530.CrossRefGoogle Scholar
  25. 25.
    H. Tawil, L. D. Bentsen, S. Baskaran and D. P. H. Hasselman, J. Mat. Sc. (in press).Google Scholar
  26. 26.
    L. D. Bentsen, T. Y. Tien and D. P. H. Hasselman, J. Amer. Ceram. Soc. 67 (1984) C-85.CrossRefGoogle Scholar
  27. 27.
    H. J. Siebeneck, D. P. H. Hasselman, J. J. Cleveland and R. C. Bradt, J. Amer. Ceram. Soc. 59 (1976) 241.CrossRefGoogle Scholar
  28. 28.
    H. J. Siebeneck, D. P. H. Hasselman, J. J. Cleveland and R. C. Bradt, J. Amer. Ceram. Soc. 60 (1977) 336.CrossRefGoogle Scholar
  29. 29.
    H. J. Siebeneck, J. J. Cleveland, D. P. H. Hasselman and R. C. Bradt, p.p. 753–62 in Proc. of Symposium on Ceramic Micros true tures, Westview Press (1977).Google Scholar
  30. 30.
    L. D. Bentsen, D. P. H. Hasselman, N. Claussen. 369-82 in Environmental Degradation of Engineering Materials in Aggressive Environments. Ed. by M. R. Louthan, R. D. McNitt and R. D. Sisson, Jr. Virginia Polytechnic Institute (1981).Google Scholar
  31. 31.
    D. P. H. Hasselman, R. Syed, R. F. Johnson, M. P. Taylor, K. Chyung, J. Mat. Sc. (in press).Google Scholar
  32. 32.
    S. Nasu, T. Takahashi, T. Kikuchi, J. Nucl. Mat. 43 (1972) 72.CrossRefGoogle Scholar
  33. 33.
    T. Tanaka, H. Suzuki, Carbon 10 (1972) 253.CrossRefGoogle Scholar
  34. 34.
    M. R. Hull, W. W. Lozier, A. W. Moore, Carbon 11 (1973) 81.CrossRefGoogle Scholar
  35. 35.
    B. R. Powell, Jr., G. E. Youngblood, D. P. H. Hasselman and L. D. Bentsen, J. Amer. Ceram. Soc. 63 (1980) 581.CrossRefGoogle Scholar
  36. 36.
    D. P. H. Hasselman, R. Syed and T. Y. Tien, J. Mat. Sc. (in press).Google Scholar
  37. 37.
    D. P. H. Hasselman, Am. Ceram. Soc. Bull. 49 (1970) 1933.Google Scholar
  38. 38.
    D. P. H. Hasselman, Ceramurgia 4 (1978) 147.CrossRefGoogle Scholar
  39. 39.
    D. P. H. Hasselman, P. F. Becher and K. S. Mazdiyasni, Materials Technology and Testing 11 (1980) 82.Google Scholar
  40. 40.
    M. S. Tacvorian, Soc. Franc. Ceram. Bull. 29 (1955) 20.Google Scholar
  41. 41.
    A. Arias, J. Am. Ceram. Soc. 49 (1966) 339.CrossRefGoogle Scholar
  42. 42.
    H. P. Kirchner, R. M. Gruver and R. E. Walker, Am. Ceram. Soc. Bull. 47 (1968) 498.Google Scholar
  43. 43.
    H. P. Kirchner, R. M. Gruver and R. E. Walker, J. Appl. Phys. 40 (1969) 3445.CrossRefGoogle Scholar
  44. 44.
    J. Gebauer, D. A. Krohn and D. P. H. Hasselman, J. Am. Ceram. Soc. 55 (1972) 175.CrossRefGoogle Scholar
  45. 45.
    K. Satyamurthy, J. P. Singh., M. P. Kamat and D. P. H. Hasselman, J. Am. Ceram. Soc. 62 (1979) 431.CrossRefGoogle Scholar
  46. 46.
    K. Satyamurthy, J. P. Singh, M. P. Kamat and D. P. H. Hasselman, Proc. Brit. Ceram. Soc. 80 (1980) 10.Google Scholar
  47. 47.
    Satyamurthy, J. P., Singh, D. P. H. Hasselman and M. P. Kamat, J. Am. Ceram. Soc. 63 (1980) 363.CrossRefGoogle Scholar
  48. 48.
    D. P. H. Hasselman and J. P. Singh, Bull. Am. Ceram. Soc. 58 (1979) 856Google Scholar
  49. 49.
    R. L. Salganik, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 4 (1973) 149.Google Scholar
  50. 50.
    E. A. Bush and F. A. Hummel. J. Am. Ceram. Soc. 41 (1958) 189.CrossRefGoogle Scholar
  51. 51.
    J. A. Kuszyk and R. C. Bradt, J. Am. Ceram. Soc. 56 (1973) 420.CrossRefGoogle Scholar
  52. 52.
    P. S. Turner, J. Res. Natl. Bur. Stand. 37 (1946) 239.Google Scholar
  53. 53.
    J. B. Walsh, J. Geophys. Res. 70 (1965) 381.CrossRefGoogle Scholar
  54. 54.
    D. P. H. Hasselman, pp. 89–103 in Ceramics in Severe Environments, Ed. by W. W. Kriegel and H. Palmour, Plenum Press, New York (1971)Google Scholar
  55. 55.
    D. P. H. Hasselman, J. Am. Ceram. Soc. 53 (1970) 490.CrossRefGoogle Scholar
  56. 56.
    D. P. H. Hasselman and J. P. Singh, Theoretical and Applied Fracture Mechanics 2 (1984) 59.CrossRefGoogle Scholar
  57. 57.
    D. R. Larson, J. A. Coppola, D. P. H. Hasselman and R. C. Bradt, J. Am. Ceram. Soc. 57 (1974) 417.CrossRefGoogle Scholar
  58. 58.
    M. V. Swain, J. Mat. Sc. Lett. 2 (1983) 279.CrossRefGoogle Scholar
  59. 59.
    C. J. Fairbanks, H. L. Lee and D. P. H. Hasselman, J. Am. Ceram. Soc. 67 (1984) C-236.CrossRefGoogle Scholar
  60. 60.
    R. C. Rossi, Bull. Amer. Ceram. Soc. 48 (1969) 736.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. P. H. Hasselman
    • 1
  1. 1.Department of Materials EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations