Advertisement

Fabrication and Properties of Transformation-Toughened Sodium Beta”-Alumina

  • David J. Green

Abstract

Sodium β-Al2O3 is a fast ion conductor for sodium and is useful for a variety of applications1−3. In particular, it is the prime candidate as the solid state electrolyte in the Na-S battery. The technical feasibility of this battery has been demonstrated but its lifetime is often limited by electrolytic degradation. Two failure modes have been identified4 and the analysis of one of these modes 5−7 indicated that the critical current density for the initiation of failure should depend on the fracture toughness of the electrolyte. Thus, techniques to increase the fracture toughness of the ceramic would be beneficial in terms of the lifetime of the battery. Moreover, if the increase in toughness can be translated into improved strength, this would lead to improvements in other aspects of the mechanical reliability.

Keywords

Residual Stress Fracture Toughness Ionic Resistivity Surface Compression Zr02 Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Holzapfel and H. Rickert, Solid State Chemistry — New Possibilities for Research and Industry, Naturwiss 64: 53 (1977).CrossRefGoogle Scholar
  2. 2.
    B. Steele, Ions in the Solid State, New Scientist, 78: 705 (1978).Google Scholar
  3. 3.
    T. A. Wheat, Exploring Ionic Conductors, Clay and Ceramics 52: 17 (1978).Google Scholar
  4. 4.
    L. C. DeJonghe, L. A. Feldman and A. Buechele, Slow Degradation and Electron Conduction in Sodium Beta-Aluminas, J. Am. Ceram. Soc. 16: 780 (1981).Google Scholar
  5. 5.
    R. H. Richman and G. J. Tennenhouse, A Model for Degradation of Ceramic Electrolytes in the Na-S Batteries, J. Am. Ceram. Soc. 58: 63 (1975).CrossRefGoogle Scholar
  6. 6.
    D. K. Shetty, A. V. Virkar and R. S. Gordon, Electrolytic Degradation of Lithia-Stabilized ß”-Alumina, in: “Fracture Mechanics of Ceramics, Vol. 4,” R. C. Bradt et al., Plenum Press, New York (1978).Google Scholar
  7. 7.
    L. A. Feldman and C. DeJonghe, Initiation of Mode 1 Degradation in Sodium Beta-Alumina Electrolytes, J. Mater. Sci. 17: 517 (1982).CrossRefGoogle Scholar
  8. 8.
    A. G. Evans and A. H. Heuer, Transformation Toughening in Ceramics: Martensitic Transformations in Crack Tip Stress Fields, J. Am. Ceram. Soc. 63: 241 (1980).CrossRefGoogle Scholar
  9. 9.
    F. F. Lange, Transformation Strengthening: Thermodynamic Approach to Phase Retention and Toughening, in: “Fracture Mechanics of Ceramics, Vol. 6, ” R. C. Bradt et al., eds., Plenum Press, New York (1983).Google Scholar
  10. 10.
    N. Claussen, M. Rühle and A. H. Heuer (eds), “Science and Technology of Zirconia II, Advances in Ceramics, Vol. 12,” American Ceramic Society, Columbus, OH (1984).Google Scholar
  11. 11.
    F. F. Lange, B. I. Davis and D. O. Raleigh, Transformation Strengthening of 3”-Al with Tetragonal ZrO, J. Am. Ceram. Soc. 66:C-50 (1983). 15 1CrossRefGoogle Scholar
  12. 12.
    L. Viswanathan, Y. Ikuma and A. V. Virkar, Transformation Toughening of 3”-Alumina by Incorporation of Zirconia, J. Mater. Sci. 18: 109 (1983).CrossRefGoogle Scholar
  13. 13.
    R. McMeeking and A. G. Evans, Mechanics of Transformation-Toughening in Brittle Materials, J. Am. Ceram. Soc. 65: 242 (1982).CrossRefGoogle Scholar
  14. 14.
    B. Budiansky, J. Hutchison and J. Lambroupolos, Continuum Theory of Dilatant Transformation Toughening in Ceramics, Int. J. Solids Struct. 19: 337 (1983).CrossRefGoogle Scholar
  15. 15.
    D. B. Marshall, M. D. Drory and A. G. Evans, Transformation Toughening in Ceramics, in: “Fracture Mechanics of Ceramics, Vol. 6, ” R. C. Bradt et al., eds., Plenum Press, New York (1983).Google Scholar
  16. 16.
    A. V. Virkar and R. S. Gordon, Fracture Properties of Polycrystalline Lithia-Stabilized ß”-Al203, J. Am. Ceram. Soc. 60: 58 (1977).CrossRefGoogle Scholar
  17. 17.
    F. F. Lange, Transformation Toughening: IV, Fabrication, Fracture Toughness and Strength of Al203/Zr02 Composites, J. Mater. Sci. 17: 247 (1982).CrossRefGoogle Scholar
  18. 18.
    R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, J. Appl. Phys. 23: 779 (1952).CrossRefGoogle Scholar
  19. 19.
    D. G. Ast, Evidence for Percolation-Controlled Conductivity in Amorhous AsxTeix Films, Phys. Rev. Letters 33: 1042 (1974).CrossRefGoogle Scholar
  20. 20.
    R. W. Powers and S. P. Mitoff, The Influence of Crystal Structure and of Microstructure on Some Properties of Polycrystalline Beta-Alumina, in; “Solid Electrolytes”, P. Hagenmuller and W. Van Gool (eds.), Academic Press, New York (1977).Google Scholar
  21. 21.
    D. J. Green and M. G. Metcalf, Properties of Slip-Cast Transformation-Toughened 3”–Al2CL/ZrO Composites, Am. Ceram. Soc. Bull. 63: 803 (1984). 1Google Scholar
  22. 22.
    D. J. Green, Transformation Toughening and Grain Size Control in 3”-Al203/Zr02 Composites, J. Mater. Sci. 20: 2639 (1985).CrossRefGoogle Scholar
  23. 23.
    D. J. Green, Microcracking Mechanisms in Ceramics, in: “Fracture Mechanics of Ceramics, Vol. 5, ” R. C. Bradt et al., eds., Plenum Press, New York (1983).Google Scholar
  24. 24.
    G. E. Youngblood, A. V. Virkar, W. R. Cannon and R. S. Gordon, Sintering Processes and Heat Treatment Schedules for Conductive, Lithia-Stabilized ß”-Al2O3, Am. Ceram. Soc. Bull. 56: 206 (1977).Google Scholar
  25. 25.
    D. J. Green, Critical Microstructures for Microcracking in Al2O3/ZrO2 Composites, J. Am. Ceram. Soc. 65: 610 (1982).CrossRefGoogle Scholar
  26. 26.
    G. E. Youngblood, G. R. Miller and R. S. Gordon, Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia-Stabilized ft”-Al20n3 J. Am. Ceram. Soc. 61: 86 (1978).CrossRefGoogle Scholar
  27. 27.
    D. J. Green and M. G. Metcalf, Unpublished Data.Google Scholar
  28. 28.
    D. J. Green, Improved Beta”-Aluminum Oxide Electrolytes Through Transformation Toughening, Final Report, Subcontract No. 4523010 (LBL), May 1984.Google Scholar
  29. 29.
    D. B. Marshall, B. R. Lawn and A. G. Evans, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc. 63: 574 (1980).CrossRefGoogle Scholar
  30. 30.
    D. B. Marshall and B. R. Lawn, An Indentation Technique for Measuring Residual Stresses in Tempered Glass Surfaces, J. Am. Ceram. Soc. 60: 86 (1977).CrossRefGoogle Scholar
  31. 31.
    D. J. Green, Discussion of “Crack Size Dependence of Fracture Toughness in Transformation-Toughened Ceramics, J. Mater. Sci. To be published, (1985).Google Scholar
  32. 32.
    Y. Ikuma and A. V. Virkar, Response to Discussion of “Crack Size Dependence of Fracture Toughness in Transformation-Toughened Ceramics, J. Mater. Sci. To be published, (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David J. Green
    • 1
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUSA

Personalised recommendations