Manufacture of Zone Plates

  • Alan G. Michette

Abstract

In the previous chapter the imaging properties of amplitude and phase zone plates were considered, on the assumption that the zone boundaries were correctly positioned. These properties will be modified for realizable zone plates, since the boundaries cannot be positioned with arbitrary accuracy. In particular, the intensity in each of the predicted foci will, in general, be decreased, the point spread functions will be changed, and further foci may be obtained. A normally less important modification may be to the positions of the foci. In addition, amplitude zone plates for soft X rays are normally made on a supporting substrate, causing the open zones to be partially absorbing, while the closed zones may not be thick enough to be totally absorbing. By placing limits on the effects of these changes, for example by stipulating that diffraction-limited imaging is required, manufacturing tolerances can be obtained. The types of manufacturing error, and the corresponding tolerances, depend on the method of making the zone plates. Some methods for manufacturing amplitude zone plates will be discussed later in this chapter, while in this section tolerances will be established. The manufacture of phase zone plates will be discussed in Chapter 11, since the optical properties of most materials in the soft X-ray region are not yet known with sufficient accuracy to enable them to be designed and made with any confidence.

Keywords

Nickel Glycerol Argon Hydrocarbon Rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 9

  1. 1.
    W. T. Welford, Aberrations of the Symmetrical Optical System, p. 206, Academic Press, New York (1974).Google Scholar
  2. 2.
    M. Born and E. Wolf, Principles of Optics, 5th ed., p. 468, Pergamon Press, Elmsford, N.Y. (1975).Google Scholar
  3. 3.
    M. J. Simpson, Design considerations of zone plate optics for a scanning transmission x-ray microscope, Ph.D. thesis, London University (1984).Google Scholar
  4. 4.
    M. J. Simpson and A. G. Michette, The effects of manufacturing inaccuracies on the imaging properties of Fresnel zone plates, Opt. Acta, 30, 1455–1462 (1983).Google Scholar
  5. 5.
    I. Brodie and J. J. Muray, The Physics of Microfabrication, Plenum Press, New York (1982).Google Scholar
  6. 6.
    D. C. Shaver, D. C. Flanders, N. M. Ceglio, and H. I. Smith, X-ray zone plates fabricated using electron-beam and x-ray lithography, J. Vac. Sci. Technol., 16, 1626–1630 (1979).CrossRefGoogle Scholar
  7. 7.
    D. P. Kern, P. J. Houzego, P. J. Coane, and T. H. P. Chang, Practical aspects of microfabrication in the 100 nm region, J. Vac. Sci. Technol., B1, 1096–1100 (1983).CrossRefGoogle Scholar
  8. 8.
    H. Aritome, H. Aoki, and S. Namba, Focusing characteristics of x-ray zone plates fabricated by electron beam lithography and reactive ion etching, Jpn. J. Appl. Phys. Part 2, 23, L406–L408 (1984).CrossRefGoogle Scholar
  9. 9.
    E. Kratschmer, D. Stephani, and H. Beneking, High resolution 100 keV e-beam lithography, in: Microcircuit Engineering 83 (H. Ahmed, J. R. A. Cleaver, and G. A. C. Jones, eds.), pp. 15–22, Academic Press, New York (1983).Google Scholar
  10. 10.
    J. M. Warlaumont, Status of microstructure fabrication, High Resolution Soft X-Ray Optics, Proc. SPIE 316, 109–119 (1981).Google Scholar
  11. 11.
    C. D. Wilkinson, Fabrication of very small structures, in: Examining the Submicron World (R. Feder, J. Wm. McGowan, and D. M. Shinozaki, eds.), NATO ASI Series, Series B: Physics, Vol. 137, pp. 215–229, Plenum Press, New York (1986).Google Scholar
  12. 12.
    K. Murata, D. F. Kyser, and C. H. Ting, Monte Carlo simulation of fast secondary electron production in electron beam resists, J. Appl. Phys., 52, 4396–4405 (1981).CrossRefGoogle Scholar
  13. 13.
    A. N. Broers, J. M. E. Harper, and W. W. Molzen, 250 Å linewidths with PMMA electron resist. Appl. Phys. Lett., 33, 392–394 (1978).CrossRefGoogle Scholar
  14. 14.
    P. Charalambous, Image data collection, contamination and beam writing in the STEM, Ph.D. thesis, London University (1982).Google Scholar
  15. 15.
    L. Reiner and M. Wächter, Contribution to the contamination problem in transmission electron microscopy, Ultramicroscopy, 3, 169–174 (1978).CrossRefGoogle Scholar
  16. 16.
    Y. Harada, T. Tomita, T. Watabe, H. Watanabe, and T. Etoh, Reduction of contamination in analytical electron microscopy, Scanning Electron Microscopy II (O. Johari and R. P. Becker, eds.), pp. 103–110, SEM Inc., AMF O’Hare (1979).Google Scholar
  17. 17.
    A. N. Broers, J. Cuomo, J. Harper, W. Molzen, R. Laibowitz, and M. Pomerants, High resolution electron beam fabrication using STEM, Ninth International Congress on Electron Microscopy, Toronto, Vol. 3, pp. 343–354 (1978).Google Scholar
  18. 18.
    M. T. Browne, P. Charalambous, and R. E. Bürge, Uses of contamination in STEM: Projection electron lithography, Inst. Phys. Conf. Ser. 61, 43–44 (1982).Google Scholar
  19. 19.
    A. G. Michette, M. T. Browne, P. Charalambous, R. E. Burge, M. J. Simpson, and P. J. Duke, Fabrication of small linewidth diffractive optics for use with soft x-rays, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 109–118, Springer, Berlin (1984).Google Scholar
  20. 20.
    A. G. Michette and R. E. Burge, Manufacture and tests of objective zone plates for use in a scanning transmission x-ray microscope, J. Microsc. (Oxford), 138, 303–309 (1985).CrossRefGoogle Scholar
  21. 21.
    C. J. Buckley, M. T. Browne, and P. Charalambous, Contamination lithography for the fabrication of zone plate x-ray lenses, Electron-Beam, X-Ray and Ion-Beam Techniques for Submicrometer Lithography IV, Proc. SPIE 537, 213–217 (1985).Google Scholar
  22. 22.
    E. Spiller and R. Feder, X-ray lithography, in: X-Ray Optics (H.-J. Queisser, ed.), Topics in Applied Physics, Vol. 22, pp. 35–92, Springer, Berlin (1977).Google Scholar
  23. 23.
    G. Schmahl and D. Rudolph, High power zone plates as image forming systems for soft x-rays, Optik (Stuttgart), 29, 577–585 (1969).Google Scholar
  24. 24.
    J. H. Dijkstra, W. de Graaff:, and L. J. Lantwaard, Construction of apodized zone plates for solar x-ray image formation, in: New Techniques in Space Astronomy (F. Labuhn and R. Lust, eds.), pp. 207–210, Reidel, Dordrecht (1971).Google Scholar
  25. 25.
    D. Rudolph, Holographische Zonenplatten als abbildende Systeme für die Röntgenastronomie, Forschungsbericht W74-07 des Bundesministeriums für wis-senschaftliche Forschung (1974).Google Scholar
  26. 26.
    G. Schmahl, D. Rudolph, P. Guttmann and O. Christ, Zone plates for x-ray microscopy, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 63–74, Springer, Berlin (1984).Google Scholar
  27. 27.
    P. Guttmann, Construction of a micro zone plate and evaluation of imaging properties, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds), Springer Series in Optical Sciences, Vol. 43, pp. 75–90, Springer, Berlin (1984).Google Scholar
  28. 28.
    J. Thieme, Construction of condenser zone plates for a scanning x-ray microscope, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 91–96, Springer, Berlin (1984).Google Scholar
  29. 29.
    K. H. von Grote, G. Mollenstedt and R. Spiedel, Preparation of short focal length zone plates for x- and uv-rays, and of correction plates for electron microscopes, Optik (Stuttgart), 22, 252–269 (1965).Google Scholar
  30. 30.
    B. E. Bol Raap, J. B. le Poole, J. H. Dijkstra, W. de Graaff, and L. J. Lantwaard, X-ray heliography by means of a Fresnel-Soret type zone plate camera, in: Small Rocket Instrumentation Techniques (Ken-Ichi Maeda, ed.), pp. 203–210, North- Holland, Amsterdam (1969).Google Scholar
  31. 31.
    H. W. P. Koops and J. Grob, Submicron lithography by demagnifying electron beam projection, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 119–128, Springer, Berlin (1984).Google Scholar
  32. 32.
    F. Kalk and D. Glocker, Thick zone plate fabrication using reactive sputter etching, J. Vac. Sci. Technol., 19, 170–172 (1981).CrossRefGoogle Scholar
  33. 33.
    D. Glocker and R. Wiseman, A new method for the batch production of micro-Fresnel zone plates, J. Vac. Sci. Technol., 20, 1098–1100 (1982).CrossRefGoogle Scholar
  34. 34.
    Y. Vladimirsky, E. Källne, and E. Spiller, Fabrication of free standing x-ray transmission gratings and zone plates, X-Ray Lithography and Applications of Soft X-Rays to Technology, Proc. SPIE 448, 25–37 (1984).Google Scholar
  35. 35.
    D. Rudolph and G Schmahl, High power zone plates for a soft x-ray microscope, in: Ultrasoft X-Ray Microscopy: Its Application to Biological and Physical Sciences (D. F. Parsons, ed.), Ann. N. Y. Acad. Sei. Vol. 342, pp. 94–104 (1980).Google Scholar
  36. 36.
    Y. S. Toulokian and C. X. Ho (eds.), Thermodynamic Properties of Matter, IFI/Plenum Data, New York (1970).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alan G. Michette
    • 1
  1. 1.King’s CollegeLondonEngland

Personalised recommendations