Skip to main content

Manufacture of Grazing Incidence Reflective Optics

  • Chapter
Optical Systems for Soft X Rays
  • 162 Accesses

Abstract

In addition to the surface roughness effects discussed in the previous chapter, two other considerations must be taken into account when assessing the performances of real grazing incidence systems. These are geometric errors in the surface figures, and misalignments of the components of compound systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Korsch, C. L. Wyman, and L. M. Perry, Influence of alignment and surface defects on the performance of x-ray telescopes, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 211–222 (1979).

    Google Scholar 

  2. B. Gale and M. Stedman, Non spherical mirrors in x-ray optics, Aspheric Optics: Design, Manufacturing, Testing, Proc. SPIE 235, 21–26 (1980).

    Google Scholar 

  3. E. Spiller, Soft x-ray optics and microscopy, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 1091–1129, North-Holland, Amsterdam (1983).

    Google Scholar 

  4. P. A. J. de Korte, R. Giralt, J. N. Coste, C. Ernu, S. Frindel, J. Flamand, and J. J. Contet, EXOSAT x-ray imaging optics, Appl. Opt., 20, 1080–1088 (1981).

    Article  PubMed  Google Scholar 

  5. M. Stedman, T. H. English, and A. Franks, New design of mirror bending block, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 69–74 (1981).

    Google Scholar 

  6. A. Franks, Advances in x-ray optics at the National Physical Laboratory, J. Phys. (Paris) C2, 45, 69–72 (1984).

    Google Scholar 

  7. A. Franks, The metrology of x-ray optical components, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 179–188, American Institute of Physics, New York (1981).

    Google Scholar 

  8. K. Lindsey and A. Franks, Metal optics versus glass optics, Advances in Optical Production Technology, Proc. SPIE 163, 46–54 (1979).

    Google Scholar 

  9. R. E. Engdahl, Chemical vapour deposited (CVD) silicon carbide mirror technology, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 123–130 (1981).

    CAS  Google Scholar 

  10. V. Rehn and W. J. Choyke, SiC mirrors for synchrotron radiation, Nucl. Instrum. Methods, 177, 173–178 (1980).

    CAS  Google Scholar 

  11. A. Franks, X-ray telescope mirrors—materials, manufacture, tolerances and technology, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 110–122 (1979).

    Google Scholar 

  12. K. Lindsey, R. Morrell, and M. J. Hanney, Ceramic materials as mirrors for synchrotron radiation, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 140–147 (1981).

    CAS  Google Scholar 

  13. M. M. Kelly and J. B. West, Fabrication and use of silicon carbide mirrors for synchrotron radiation, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 135–139 (1981).

    CAS  Google Scholar 

  14. H. L. Gerth, Introduction to precision machining of metal optics, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 225–229 (1981).

    Google Scholar 

  15. D. M. Miller and N. Laegreid, PNL-diamond turning capability, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G. Brown, eds.), SSRL Report No. 78/04, pp. VII39–VII42, Stanford Linear Accelerator Center (1978).

    Google Scholar 

  16. A. Franks, Materials problems in the production of high quality optical surfaces, Mater. Sci. Eng. 19, 169–183 (1975).

    Article  CAS  Google Scholar 

  17. C. V. Muffoletto, Reflective and refractive scattering of ultraviolet radiation caused by state of the art optical grinding and polishing techniques, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 85–88 (1981).

    CAS  Google Scholar 

  18. G. M. Sanger, Optical fabrication technology, the present and future, Contemporary Methods of Optical Manufacturing and Testing, Proc. SPIE 433, 2–18 (1983).

    Google Scholar 

  19. R. L. Gentilman and E. A. Maguire, Chemical vapor deposition of silicon carbide for large area mirrors, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 131–134 (1981).

    CAS  Google Scholar 

  20. K. Parker and H. Shah, The stress of electroless nickel deposits on beryllium, J. Electrochem. Soc., 117, 1091–1094 (1970).

    Article  Google Scholar 

  21. R. E. Parks, Traditions of optical fabrication, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 56–64 (1981).

    Google Scholar 

  22. R. Lainé, R. Giralt, R. Zobl, P. A. J. de Korte, and J. A. M. Bleeker, X-ray imaging telescope on EXOSAT, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 181–188 (1979).

    Google Scholar 

  23. P. A. J. de Korte, The current state of x-ray and XUV replica optics, in: New Techniques in X-Ray and XUV Optics, Proc. RAL Symp. (B. J. Kent and B. E. Patchett, eds.), RL-83-010, pp. 37–49, Rutherford Appleton Laboratory (1983).

    Google Scholar 

  24. A. Franks, X-ray focusing by bent glass optics, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G. Brown, eds.), SSRL Report No. 78/04, pp. VII128–VII141, Stanford Linear Accelerator Center (1978).

    Google Scholar 

  25. J. A. Howell and P. Horowitz, Ellipsoidal and bent cylindrical condensing mirrors for synchrotron radiation, Nucl. Instrum. Methods, 125, 225–230 (1975).

    Article  Google Scholar 

  26. J. H. Underwood and D. Turner, Bent glass optics, X-Ray Imaging, Proc. SPIE 106, 125–135 (1977).

    Google Scholar 

  27. M. Stedman, A parabolic collimator of adjustable incidence angle and constant focal length, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G Brown, eds.), SSRL Report No. 78/04, pp. VII142–VII147, Stanford Linear Accelerator Center (1978).

    Google Scholar 

  28. R. A. Beth, Statics of elastic bodies, in: Handbook of Physics (E. U. Condon and H. Odishaw, eds.), 2nd ed., pp. 3.64–3. 77, McGraw-Hill, New York (1967).

    Google Scholar 

  29. M. Stedman and V. W. Stanley, A machine for the rapid and accurate measurement of profile, Advances in Optical Production Technology, Proc. SPIE 163, 99–102 (1979).

    Google Scholar 

  30. M. Stedman, Metrological evaluation of grazing incidence mirrors, High Resolution Soft X-Ray Optics, Proc. SPIE 316, 2–8 (1981).

    Google Scholar 

  31. C. A. Wallace, D. F. Paul, and K. Lindsey, Production and evaluation of supersmooth x-ray synchrotron mirror surfaces, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 186–192 (1981).

    CAS  Google Scholar 

  32. R. S. Longhurst, Geometrical and Physical Optics, 3rd ed., p. 352, Longmans, London (1973).

    Google Scholar 

  33. M. J. Downs, Surface Profile Interferometer, British Patent No. 8037689 (1980).

    Google Scholar 

  34. C. F. Bruce and B. S. Thornton, Obliquity effects in interference microscopes, J. Sci. Instrum., 34, 203–204 (1957).

    Article  Google Scholar 

  35. J. M. Bennett, Measurement of RMS roughness, autocovariance function and other statistical properties of optical surfaces using a FECO scanning interferometer, Appl. Opt., 15, 2705–2721 (1976).

    Article  PubMed  CAS  Google Scholar 

  36. D. W. Butler, A stereo electron microscope technique for microtopographic measurements, Micron, 4, 410–424 (1973).

    Google Scholar 

  37. P. S. Young, Fabrication of the high-resolution mirror assembly for the HEAO-2 x-ray telescope, Space OpticsImaging X-Ray Optics Workshop, Proc. SPIE 184, 131–138 (1979).

    Google Scholar 

  38. S. Mrowka, W. Harris, and R. J. Speer, Short wavelength interferometric testing of x-ray optics, High Resolution Soft X-Ray Optics, Proc. SPIE 316, 16–20 (1981).

    Google Scholar 

  39. B. Aschenbach, H. Bräuninger, A. Ondrusch, and P. Predehl, X-ray scattering of superpolished flat mirror samples, High Resolution Soft X-Ray Optics, Proc. SPIE 316, 187–193 (1981).

    CAS  Google Scholar 

  40. J. R. H. Herring, The evaluation of highly polished surface quality using grazing incidence soft x-ray reflection and scattering, in: New Techniques in X-Ray and XUV Optics, Proc. RAL Symp. (B. J. Kent and B. E. Patchett, eds), RL-83-010, pp. 85–101, Rutherford Appleton Laboratory (1983).

    Google Scholar 

  41. J. C. Rife and J. F. Osantowski, Optical constants in the extreme ultraviolet and soft x-ray region, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 103–107 (1981).

    CAS  Google Scholar 

  42. K. Lindsey and A. B. Penfold, Production and assessment of supersmooth optical surfaces, Opt. Eng., 15, 220–225 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Michette, A.G. (1986). Manufacture of Grazing Incidence Reflective Optics. In: Optical Systems for Soft X Rays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2223-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2223-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9304-0

  • Online ISBN: 978-1-4613-2223-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics