Skip to main content
  • 160 Accesses

Abstract

As discussed in the previous chapters, the advances in soft X-ray optical systems have been rapid over the last few years, due to the development of intense sources, advances in manufacturing technology, and the desire to utilize the unique properties of X rays in the soft X-ray wavelength range. In this chapter the possibilities of further improvements in optical performance and additional uses of existing or improved systems will be discussed. First, however, a brief survey of advances and potential advances in soft X-ray sources will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Farge, European Synchrotron Radiation Facility—The Feasibility Study, European Science Foundation (1979).

    Google Scholar 

  2. Y. Farge and P. J. Duke (eds.), European Synchrotron Radiation Facility, Supplement I. The Scientific Case, European Science Foundation (1979).

    Google Scholar 

  3. D. J. Thompson and M. W. Poole (eds), European Synchrotron Radiation Facility, Supplement II. The Machine, European Science Foundation (1979).

    Google Scholar 

  4. B. Buras and G. V. Marr (eds.), European Synchrotron Radiation Facility. Supplement III. Instrumentation, European Science Foundation (1979).

    Google Scholar 

  5. D. J. Thompson, Development of an optimised x-ray synchrotron radiation facility, Nucl. Instrum. Methods Phys. Res., 201, 1–2 (1982).

    Article  Google Scholar 

  6. B. Buras and S. Tazzari, European Synchrotron Radiation Facility, Report of the ESRP, 3rd edition, European Synchrotron Radiation Project, c/o CERN, Geneva, Switzerland (1985).

    Google Scholar 

  7. D. Attwood, B. Hartline, and R. Johnson, The Advanced Light Source: Scientific Opportunities, LBL Pub-5111, Lawrence Berkeley Laboratory, University of California (1984).

    Google Scholar 

  8. G. V. Marr and D. J. Thompson (eds.), An Optimised Vacuum Ultraviolet Storage Ring, European Science Foundation, North-Holland, Amsterdam (1981).

    Google Scholar 

  9. M. Yoshimatsu and S. Kozaki, High brilliance x-ray sources, in: X-Ray Optics, Applications to Solids (H.-J. Queisser, ed.), Topics in Applied Physics, Vol. 22, pp. 9–33, Springer, Berlin (1977).

    Google Scholar 

  10. A. G. Michette, X-ray microscopy with a rotating anode source, King’s College London Internal Report (1985).

    Google Scholar 

  11. A. G. Michette, P. C. Cheng, R. W. Eason, F. O’Neill, Y. Owadano, R. J. Rosser, P. Rumsby and M. J. Shaw, Soft x-ray contact microscopy using laser plasma sources, J. Phys. D., 19, 363–371 (1986).

    Article  CAS  Google Scholar 

  12. A. G. Michette, C. Hills, F. O’Neill, A. M. Rogoyski, E. Turcu and Y. Owadano, The use of low power pulsed lasers as plasma sources for soft x-ray contact microscopy, to be published in Proc. 3rd Topical Meeting on Short Wavelength Coherent Radiation: Generation and Applications (Monterey, 18–24 March, 1986 ).

    Google Scholar 

  13. R. C. Elton, Recent advances in x-ray laser research, in: Advances in X-Ray Analysis (C. S. Barrett, D. E. Leyden, J. B. Newkirk, and C. O. Ruud, eds.), Vol. 21, pp. 1–6, Plenum Press, New York (1978).

    Google Scholar 

  14. F. V. Bunkin, V I. Derzhiev, and S. I. Yakovlenko, Prospects for light amplification in the far ultraviolet, Sov. J. Quantum. Electron., 11, 981–997 (1981).

    Article  Google Scholar 

  15. M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, and P. D. Rockett, Exploding-foil technique for achieving a soft x-ray laser, Phys. Rev. Lett., 54, 106–109 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, Demonstration of a soft x-ray amplifier, Phys. Rev. Lett., 54, 110–113 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. D. L. Matthews, E. M. Campbell, K. Estabrook, C. W. Hatcher, R. L. Kauffman, R. W. Lee, and C. L. Wang, Observation of enhanced emission of the O VIII H line in a recombining laser produced plasma, Appl. Phys. Lett., 45, 226–228 (1984).

    Article  CAS  Google Scholar 

  18. S. E. Harris and T. B. Lucatorto (eds.), Second Topical Meeting on Laser Techniques in the Extreme Ultraviolet, AIP Conference Proceedings No. 119, American Institute of Physics, New York (1984).

    Google Scholar 

  19. K. Boyer, Multiphoton processes and short wavelength lasers, Proceedings of the Los Alamos Conference on Optics’83, Proc. SPIE 380, 348–352 (1983).

    CAS  Google Scholar 

  20. A. P. Lukirskii, E P. Savinov, O. A. Ershov, and Y. F. Shepelev, Reflection coefficients of radiation in the wavelength range from 23.6 to 113 Å for a number of elements and substances and the determination of the refractive index and absorption coefficient, Opt. Spectrosc., 16, 168–172 (1964).

    Google Scholar 

  21. O A. Ershov, I. A. Brytov, and A. P. Lukirskii, Reflection of x-rays from certain substances in the region from 7 to 44 Å, Opt. Spectrosc., 22, 66–69 (1967).

    Google Scholar 

  22. M. Yanagihara, S. Yamaguchi, M. Niwano, Y. Iguchi, A. Yagishita, T. Koide, S. Sato, and T. Sasaki, Optical constants in the soft x-ray region, Photon Factory Activity Report (1984).

    Google Scholar 

  23. V. A. Fomichev and A. P. Lukirskii, Absorption coefficients of aluminium in the 23.6–410 Å range of ultrasoft x-radiation, Opt. Spectrosc., 22, 432–434 (1967).

    Google Scholar 

  24. R. Haensel, C. Kunz, T. Sasaki, and B. Sonntag, Absorption measurements of copper, silver, tin, gold and bismuth in the far ultraviolet, Appl. Opt., 7, 301–306 (1968).

    Article  PubMed  CAS  Google Scholar 

  25. H. J. Hagemann, W. Gudat, and G. Kunz, Optical constants from the far infrared to the x-ray region: Mg, Al, Gu, Ag, Au, Bi, C, and Al203, J. Opt. Soc. Am., 65, 742–744 (1975).

    CAS  Google Scholar 

  26. H. J. Hagemann, W. Gudat, and C. Kunz, DESY Report 74 /7 (1974).

    Google Scholar 

  27. F. Bassani and M. Alterelli, Interaction of radiation with condensed matter, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 463–605, North-Holland, Amsterdam (1983).

    Google Scholar 

  28. B. A. Bethe and E. E. Saltpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin (1957).

    Google Scholar 

  29. D. Y. Smith and E. Shiles, Finite-energy f-sum rules for valence electrons, Phys. Rev. B, 17, 4689–4694 (1978).

    Article  CAS  Google Scholar 

  30. R. Tatchyn, I. Lindau, E. Källne, M. Hecht, E. Spiller, R. Bartlett, J. Kållne, J. H. Dijkstra, A. Hawryluk, and R. Z. Bachrach, The first use of transmission gratings for measurements of optical constants in the soft x-ray region, Nucl. Instrum. Methods, 195, 423–428 (1980).

    Google Scholar 

  31. R. Tatchyn, I. Lindau, and E. Kallne, Analysis of a new method determining optical constants in the soft x-ray region, Opt. Acta, 27, 1505–1536 (1980).

    Google Scholar 

  32. A. G. Michette, Soft x-ray optical properties of materials, SERC Case studentship proposal (1984).

    Google Scholar 

  33. D. Rudolph, B. Niemann, and G. Schmahl, Status of the sputtered sliced zone plates for x-ray microscopy, High Resolution X-Ray Optics, Proc. SPIE 316, 103–105 (1981).

    CAS  Google Scholar 

  34. G. F. Taylor, A method of drawing metallic filaments and a discussion of their properties and uses, Phys. Rev., 23, 655–660 (1924).

    Article  Google Scholar 

  35. M. E. Mochel, C. J. Humphreys, J. A. Eades, J. M. Mochel, and A. M. Petford, Electron beam writing on a 20-Å scale in metal β-aluminas, Appl. Phys. Lett., 42, 392–394 (1983).

    Article  CAS  Google Scholar 

  36. M. Isaacson and A. Murray, In situ vaporization of very low molecular weight resists using 1/2 nm diameter electron beams, J. Vac. Sci. Technol., 19, 1117–1120 (1981).

    Google Scholar 

  37. N. M Ceglio, A. M. Hawryluk, and M. Schattenberg, X-ray phase lens design and fabrication, J. Vac. Sci. Technol., B1, 1285–1288 (1983).

    Article  CAS  Google Scholar 

  38. R. Day, J. Grosso, R. Bartlett, and T. Barbee, Layered synthetic microstructures: Measurements and applications, Nucl. Instrum. Methods, 208, 245–249 (1983).

    Article  CAS  Google Scholar 

  39. B. L. Henke, Low energy x-ray spectroscopy with crystals and multilayers, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 85–96, American Institute of Physics, New York (1981).

    Google Scholar 

  40. P. Lee, Multilayer mirrors and beam splitters for soft x-rays, Opt. Commun., 43, 237–241 (1982).

    Article  CAS  Google Scholar 

  41. P. Lee, R. J. Bartlett, and D. R. Kania, Soft x-ray optics using multilayer mirrors, Opt. Eng., 24, 197–201 (1985).

    CAS  Google Scholar 

  42. M. Born and E. Wolf, Principles of Optics, 5th ed., p. 43, Pergamon Press, Elmsford, N.Y. (1975).

    Google Scholar 

  43. A. Khandar and P. Dhez, Multilayer x-ray polarizers, Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, Proc. SPIE 563, 158–163 (1985).

    CAS  Google Scholar 

  44. M. Elvis, Extra-solar astronomy with a 2.4 m normal incidence x-ray telescope at 0.1 arcsec resolution, High Resolution X-Ray Optics, Proc. SPIE 316, 144–148 (1981).

    CAS  Google Scholar 

  45. P. Dhez, G. Jamelot, A. Carillon, P. Jaegle, P. Pardo, and D. Naccache, X-uv gain amplification studies in laser plasmas using normal incidence multilayer mirrors, in: Second Topical Meeting on Laser Techniques in the Extreme Ultraviolet (S. E. Harris and T. B. Lucatorto, eds.), AIP Conference Proceedings No. 119, pp. 199–206, American Institute of Physics, New York (1984).

    Google Scholar 

  46. J. Kirchner, Quantitative microanalysis with high resolution using soft x-rays—Possible applications, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 308–313, Springer, Berlin (1984).

    Google Scholar 

  47. J. Cazaux, Microanalysis and x-ray photoelectron spectroscopy: Principles and performance deductions, Rev. Phys. Appl., 10, 263–280 (1975).

    CAS  Google Scholar 

  48. D. Sayre, Review of image formation methods with the soft x-ray photon, in: Ultrasoft X-Ray Microscopy: Its Application to Biological and Physical Sciences (D. F. Parsons, ed.), Ann. N.Y. Acad. Sci. Vol. 342, pp. 387–391 (1980).

    Google Scholar 

  49. L. M. Cheng and A. G. Michette, Three dimensional imaging in scanning soft x-ray microscopy, J. Phys. (Paris) C2, 45, 97–100 (1984).

    Article  Google Scholar 

  50. M. R. Howells, Possibilities for x-ray holography using synchrotron radiation, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 318–335, Springer, Berlin (1984).

    Google Scholar 

  51. S. Aoki and S. Kikuta, X-ray holographic microscopy, Jpn. J. Appl. Phys., 13, 1385–1392 (1974).

    Article  Google Scholar 

  52. S. Aoki, Y. Ichihara, and S. Kikuta, X-ray hologram obtained by using synchrotron radiation, Jpn. J. Appl. Phys., 11, 1857 (1972).

    Article  Google Scholar 

  53. M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, and H. Rarback, X-ray holographic microscopy experiments at the Brookhaven synchrotron light source, Science with Soft X-Rays, Proc. SPIE 447, 193–203 (1984).

    Google Scholar 

  54. S. Aoki, K. Shinohara, A. Tanaka, Y. Iguchi, and M. Yanagihara, Recording x-ray holograms with x-ray resists, Photon Factory Activity Report (1984).

    Google Scholar 

  55. R. S. Longhurst, Geometrical and Physical Optics, 3rd ed., pp. 249–253, Longmans, London (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Michette, A.G. (1986). Future Developments. In: Optical Systems for Soft X Rays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2223-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2223-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9304-0

  • Online ISBN: 978-1-4613-2223-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics