Applications of Soft X-Ray Focusing Systems

  • Alan G. Michette

Abstract

Early X-ray imaging systems tended to use high-energy X rays, because of their greater penetrating power and the relative ease of production of useful fluxes. The advent of powerful sources and efficient detectors of soft X rays gave the impetus for designing and producing high-resolution optical systems and now the uses of these are many and varied. As improved optics become available it is to be expected that the range of applications will widen. In this chapter, current uses of soft X-ray optical systems will be discussed. It should be emphasized that this will not include, except in passing, uses of soft X rays that do not involve their focusing. Notable among these are lithography and contact microradiography (or microscopy).

Keywords

Nickel Quartz Carbide Attenuation Platinum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Johnson, Grating monochromators and optics for the VUV and soft x-ray region, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 173–260, North-Holland, Amsterdam (1983).Google Scholar
  2. 2.
    V. Saile and J. B. West, VUV and soft x-ray monochromators for use with synchrotron radiation, Nucl. Instrum. Methods, 208, 199–213 (1983).CrossRefGoogle Scholar
  3. 3.
    M. R. Howells, Beam line design for synchrotron spectroscopy in the VUV, Appl. Opt., 19, 4027–4034 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Franks, K. Lindsey, P. R. Stuart, and R. Morrell, Effects of synchrotron generated x-radiation on uncoated and gold-coated elastically bent silica mirrors, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G. Brown, eds.), SSRL Report No. 78/04, pp. VII117–VII127, Stanford Linear Accelerator Center (1978).Google Scholar
  5. 5.
    F. C. Brown, R. Z. Bachrach, and N. Lien, The SSRL ultrahigh vacuum grazing incidence monochromator, Nucl. Instrum. Methods, 152, 73–79 (1978).CrossRefGoogle Scholar
  6. 6.
    D. A. Shirley, Beam line chemistry, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G. Brown, eds.), SSRL Report No. 78/04, pp. VII80–VII100, Stanford Linear Accelerator Center (1978).Google Scholar
  7. 7.
    P. Charalambous, Image data collection, contamination and beam writing, Ph.D. thesis, London University (1982).Google Scholar
  8. 8.
    K. P. Miyake, R. Kato, and H. Yamashita, A new mounting of soft x-ray monochromator for synchrotron orbital radiation, Sci. Light (Tokyo), 18, 39–56 (1969).Google Scholar
  9. 9.
    J. B. West, K. Codling, and G. V. Marr, A grazing incidence monochromator for use with synchrotron radiation, J. Phys. E, 7, 137–144 (1974).CrossRefGoogle Scholar
  10. 10.
    M. R. Howells, D. Norman, G. P. Williams, and J. B. West, A grazing incidence monochromator for synchrotron radiation, J. Phys. E, 11, 199–202 (1978).CrossRefGoogle Scholar
  11. 11.
    F C. Brown, R. Z. Bachrach, and N. Lien, The SSRL ultrahigh vacuum grazing incidence monochromator: Design considerations and operating experience, Nucl. Instrum. Methods, 152, 73–79 (1978).Google Scholar
  12. 12.
    M. Salle and B. Vodar, A projected concave grating monochromator with oblique incidence for the far ultraviolet, C. R. Acad. Sci., 230, 380–382 (1950).Google Scholar
  13. 13.
    E. Kallne, J. H. Dijkstra, R. Bartlett, T. Kitchens, R. O. Tatchyn, M. Hecht, and I. Lindau, Analysis of the throughput of a grazing incidence monochromator using transmission gratings, Reflecting Optics for Synchrotron Radiation, Proc. SPIE 315, 178–184 (1981).Google Scholar
  14. 14.
    C. H. Pruett, E. M. Rowe, T. R. Winch, and F. H. Middleton, Recent instrumentation developments at the University of Wisconsin Synchrotron Radiation Center, Nucl. Instrum. Methods, 152, 57 (1978).Google Scholar
  15. 15.
    F. C. Brown, S. L. Hulbert, and N. C. Lien, Extended range computer controlled monochromator for synchrotron radiation, VI Int. Conf. on Vacuum Ultraviolet Radiation Physics, Paper III - 50 (1980).Google Scholar
  16. 16.
    H. Rarback, J. M. Kenney, J. Kirz, M. R. Howells, P. Chang, P. J. Coane, R. Feder, P. J. Houzego, D. P. Kern, and D. Sayre, Recent results from the Stony Brook scanning microscope, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 203–216, Springer, Berlin (1984).Google Scholar
  17. 17.
    W. Eberhardt, G. Kalkoffen, and C. Kunz, Grazing incidence monochromator FLIPPER, Nucl. Instrum. Methods, 152, 81–83 (1978).CrossRefGoogle Scholar
  18. 18.
    W. Jark, R.-P. Haelbich, H. Hogrefe, and C. Kunz, A new monochromator for the energy range 5 eV < hv < 1000 eV, Nucl. Instrum. Methods, 208, 315–318 (1983).CrossRefGoogle Scholar
  19. 19.
    M. R. Howells, Plane grating monochromators for synchrotron radiation, Nucl. Instrum. Methods, 177, 127–139 (1980).CrossRefGoogle Scholar
  20. 20.
    H. Petersen and H. Baumgartel, BESSY SX/700: A monochromator system covering the spectral range 3 eV < hv < 700 eV, Nucl. Instrum. Methods, 172, 191–193 (1980).CrossRefGoogle Scholar
  21. 21.
    W. Werner and H. Visser, X-ray monochromator designs based on extreme off-plane grating mountings, Appl. Opt., 20, 487–492 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Tatchyn and I. Lindau, New monochromator designs for the soft x-ray range, Nucl. Instrum. Methods Phys. Res., 195, 163–173 (1982).CrossRefGoogle Scholar
  23. 23.
    R. Tatchyn, I. Lindau, and P. L. Csonka, Optimization of rectangular transmission gratings: Applications to new monochromator design, Nucl. Instrum. Methods Phys. Res., 195, 239–243 (1982).CrossRefGoogle Scholar
  24. 24.
    J. Als-Nielsen, P. S. Pershan, H. W. Schnopper, E. H. Silver, and N. J. Westergaard, New crystal for 200-1200eV soft x-ray spectroscopy, Appl. Opt., 21, 1894–1895 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Spiller, A zone plate monochromator for synchrotron radiation, in: Workshop on X-Ray Instrumentation for Synchrotron Radiation Research (H. Winick and G. Brown, eds.), SSRL Report No. 78/04, pp. VI44–VI49, Stanford Linear Accelerator Center (1978).Google Scholar
  26. 26.
    A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays, Wiley, New York (1955).Google Scholar
  27. 27.
    B. L. Henke and J. W. M. DuMond, Submicroscopic structure determination by long wavelength x-ray diffraction, J. Appl. Phys., 26, 903–917 (1955).CrossRefGoogle Scholar
  28. 28.
    A. Franks, Some developments and applications of microfocus x-ray diffraction techniques, Br. J. Appl. Phys., 9, 349–352 (1958).CrossRefGoogle Scholar
  29. 29.
    A. Elliott, The use of toroidal reflecting surfaces in x-ray diffraction cameras, J. Sci. Instrum., 42, 312–316 (1965)CrossRefGoogle Scholar
  30. 30.
    P. Goby, New applications of Rontgen rays: Mice radiography, C.R. Acad. Sci., 156, 686–691 (1913).Google Scholar
  31. 31.
    G. Schmahl and D. Rudolph (eds.), X-Ray Microscopy, Springer Series in Optical Sciences, Vol. 43, Springer, Berlin (1984).Google Scholar
  32. 32.
    F. Polack, S. Lowenthal, Y. Petroff, and Y. Farge, Selective x-ray absorption microanalysis with synchrotron radiation, Nucl. Instrum. Methods, 152, 289–291 (1978).CrossRefGoogle Scholar
  33. 33.
    F. Polack and S, Lowenthal, Photoelectron microscope for x-ray microscopy and microanalysis, Rev. Sci. Instrum., 52, 207–212 (1981).CrossRefGoogle Scholar
  34. 34.
    R. Feder, E. Spiller, J Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, and J. Sedat, High resolution soft x-ray microscopy, Science, 197, 259–260 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Sayre, J. Kirz, R. Feder, D. M. Kim, and E. Spiller, Transmission microscopy of unmodified biological materials: Comparative radiation dosages with electrons and ultrasoft x-ray photons, Ultramicroscopy, 2, 337–349 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    R. J. Rosser, X-ray microscopy at Imperial College, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 242–250, Springer, Berlin (1984).Google Scholar
  37. 37.
    J. L. Magee, Radiation chemistry, Annu. Rev. Phys. Chem., 12, 389–410 (1961).CrossRefGoogle Scholar
  38. 38.
    R. J. Rosser, K. G. Baldwin, R. Feder, D. Bassett, A. Coles, and R. W. Eason, Soft x-ray contact microscopy with nanosecond exposure times, J. Microsc. (Oxford), 138, 311–319 (1985).CrossRefGoogle Scholar
  39. 39.
    D. Rudolph, B. Niemann, G. Schmahl and O. Christ, The Gottingen x-ray microscope and x-ray microscopy experiments at the BESSY storage ring, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 192–202, Springer, Berlin (1984).Google Scholar
  40. 40.
    S. Aoki and Y. Sakanayagi, An x-ray microscope using grazing incidence toroidal mirrors, in: Ultrasoft X-Ray Microscopy: Its Application to Biological and Physical Sciences (D. F. Parsons, ed.), Ann. N. Y. Acad. Sci. Vol. 342, pp. 158–166 (1980).Google Scholar
  41. 41.
    J. Kirz and H. Rarback, Soft x-ray microscopes, Rev. Sci. Instrum., 56, 1–13 (1985).CrossRefGoogle Scholar
  42. 42.
    B. Niemann, G. Schmahl, and D. Rudolph, Status of the scanning x-ray microscope, High Resolution X-Ray Optics, Proc. SPIE 316, 106–108 (1981).Google Scholar
  43. 43.
    F. E. Scire and E. C. Teague, Piezo driven 50 µm range stage with subnanometer resolution, Rev. Sci..Instrum., 49, 1735–1740 (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    P. Horowitz and J. A. Howell, A scanning x-ray microscope using synchrotron radiation, Science, 178, 608–611 (1972).PubMedCrossRefGoogle Scholar
  45. 45.
    P. Horowitz, Some experiences with x-ray and proton microscopes, in: Short Wavelength Microscopy (D. F. Parsons, ed.), Ann. N. Y. Acad. Sci. Vol. 306, pp. 203–222 (1978).Google Scholar
  46. 46.
    B. Niemann, The Gottingen scanning x-ray microscope, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 217–225, Springer, Berlin (1984).Google Scholar
  47. 47.
    P. J. Duke, X-ray microscopy at the Daresbury Laboratory, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optitical Sciences, Vol. 43, pp. 232–241, Springer, Berlin (1984).Google Scholar
  48. 48.
    E. Spiller, A scanning soft x-ray microscope using normal incidence mirrors, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 226–231, Springer, Berlin (1984).Google Scholar
  49. 49.
    A. Franks and B. Gale, Grazing incidence optics for x-ray microscopy, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 129–138, Springer, Berlin (1984).Google Scholar
  50. 50.
    X. Xie, S. Kang, C. Jin, and T. Jin, Soft x-ray microscopy at the Hefei Synchrotron Radiation Laboratory, Preprint from Synchrotron Radiation Instrumentation Conference, Stanford (1985).Google Scholar
  51. 51.
    D. P. Kern, P. J. Houzego, P. J. Coane, and T. H. P. Chang, Practical aspects of microfabrication in the 100 nm regime, J. Vac. Sci. Technol., B1, 1096–1100 (1983).CrossRefGoogle Scholar
  52. 52.
    J. M. Kenney, C. Jacobsen, J. Kirz, H. Rarback, F. Cinotti, W. Thomlinson, R. Rosser, and G. Schidlovsky, Absorption microanalysis with a scanning soft x-ray microscope—Mapping the distribution of calcium in bone, J. Microsc. (Oxford), 138, 321–328 (1985).Google Scholar
  53. 53.
    L. M. Cheng and A. G. Michette, Three dimensional imaging in scanning soft x-ray microscopy, J. Phys. (Paris) C2, 45, 97–100 (1984).CrossRefGoogle Scholar
  54. 54.
    D. J. Pugh and P. D. West, An electron source for a microfocus x-ray tube incorporating a single pole magnetic lens and novel focusing system, in: Developments in Electron Microscopy and Analysis (D. L. Misell, ed.), I.O.P. Conference Series No. 36, pp. 29–32, The Institute of Physics, London (1977).Google Scholar
  55. 55.
    M. J. Simpson and A. G. Michette, Considerations of zone plate optics for soft x-ray microscopy, Opt. Acta, 31, 1417–1426 (1984).Google Scholar
  56. 56.
    H. Rarback, The development of a scanning soft x-ray microscope, Ph.D. thesis, State University of New York at Stony Brook (1983).Google Scholar
  57. 57.
    H. H. Hopkins, On the diffraction theory of optical images, Proc. R. Soc. London Ser. A, 217, 408–432 (1953).CrossRefGoogle Scholar
  58. 58.
    R. E. Burge and J. C. Dainty, Partially coherent image formation in the scanning transmission electron microscope (STEM), Optik (Stuttgart), 46, 229–240 (1976).Google Scholar
  59. 59.
    C. J. R. Sheppard and A. Choudhury, Image formation in the scanning microscope, Opt. Acta, 24, 1051–1073 (1977).Google Scholar
  60. 60.
    C. J. R. Sheppard and T. Wilson, Image formation in scanning microscopes with partially coherent source and detector, Opt. Acta, 25, 315–325 (1978).Google Scholar
  61. 61.
    V. E. Cosslett and W. C. Nixon, X-Ray Microscopy, Cambridge University Press, London (1960).Google Scholar
  62. 62.
    J. C. Buckland-Wright, Quantitative microfocal radiography in medicine, biological research and the quality control industry, MicroscopyTechniques and Applications, Proc. SPIE 368, 9–16 (1982).Google Scholar
  63. 63.
    L. Y. Huang, X-ray image convertor microscopy, Z. Phys., 149, 225–253 (1957).CrossRefGoogle Scholar
  64. 64.
    F. Polack and S. Lowenthal, Photoelectron x-ray microscopy: Recent developments, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 251–260, Springer, Berlin (1984).Google Scholar
  65. 65.
    K. A. Brueckner, Energy deposition in laser heated plasmas, Phys. Rev. Lett., 36, 677–679(1976).CrossRefGoogle Scholar
  66. 66.
    J. K. Silk, A grazing incidence microscope for x-ray imaging applications, in: Ultrasoft X-Ray Microscopy: Its Application to Biological and Physical Sciences (D. F. Parsons, ed.), Ann. N. Y. Acad. Sci. Vol. 342, pp. 116–129 (1980).Google Scholar
  67. 67.
    R. H. Price, X-ray microscopy using grazing incidence reflection optics, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 189–199, American Institute of Physics, New York (1981).Google Scholar
  68. 68.
    N. M. Ceglio, D. T. Attwood, and E. V. George, Zone plate coded aperture imaging of laser produced plasmas, J. Appl Phys., 48, 1566–1569 (1977).CrossRefGoogle Scholar
  69. 69.
    N. M. Ceglio, The impact of microfabrication technology on x-ray optics, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 210–222, American Institute of Physics, New York (1981).Google Scholar
  70. 70.
    N. M. Ceglio, M. Roth, and A. M. Hawryluk, A streaked x-ray transmission grating spectrometer, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 290–291, American Institute of Physics, New York (1981).Google Scholar
  71. 71.
    G. L. Stradling, T. W. Barbee, Jr., B. L. Henke, E. M. Campbell, and W. C. Mead, Streaked spectrometry using multilayer x-ray interference mirrors to investigate energy transport in laser plasma applications, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 292–296, American Institute of Physics, New York (1981).Google Scholar
  72. 72.
    L. Mertz and N. O. Young, Fresnel transformation of images, in: Proc. Internat. Conf. on Optical Instruments and Techniques (K. J. Habeil, ed.), pp. 305–312, Chapman & Hall, London (1961).Google Scholar
  73. 73.
    N. O. Young, Fresnel transformation of images, Sky Telesc., 25, 8–12 (1963).Google Scholar
  74. 74.
    H. L. Caulfield and A. D. Williams, An introduction to holography by shadow casting, Opt. Eng., 12, 3–7 (1973).Google Scholar
  75. 75.
    W. L. Rogers, L. W. Jones, and W. H. Beierwaltes, Imaging in nuclear medicine with incoherent holography, Opt. Eng., 12, 13–22 (1973).Google Scholar
  76. 76.
    P. Lee, D. B. van Hulsteyn, A. Hauer, and S. Whitehill, Low energy x-ray imaging of laser plasmas, Opt. Lett., 6, 196–197 (1981).PubMedCrossRefGoogle Scholar
  77. 77.
    N. M. Ceglio, Zone plate coded imaging on a microscopic scale, J. Appl. Phys., 48, 1563–1565 (1977).CrossRefGoogle Scholar
  78. 78.
    B. E. Bol Raap, J. B. Le Poole, J. H. Dijkstra, W. de Graaff, and L. J. Lantwaard, X-ray heliography by means of a Fresnel-Soret type zone plate camera, in: Small Rocket Instrumentation Techniques (Ken-Ichi Maeda, ed.), pp. 203–210, North- Holland, Amsterdam (1969).Google Scholar
  79. 79.
    G. Krämer, G. Elwert, H. J. Einighammer, H. Bräuninger, and H. H. Fink, Imaging of solar active regions with Fresnel zone plates, X-Ray Imaging, Proc. SPIE 106, 79–84 (1977).Google Scholar
  80. 80.
    R. Giacconi and B. Rossi, A “telescope” for soft x-ray astronomy, J. Geophys. Res., 65, 773–775 (1960).CrossRefGoogle Scholar
  81. 81.
    W. K. H. Schmidt, A proposed x-ray focusing device with wide field of view for use in x-ray astronomy, Nucl. Instrum. Methods, 127, 285–292 (1975).CrossRefGoogle Scholar
  82. 82.
    J. R. P. Angel, Lobster eyes as x-ray telescopes, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 84–85 (1979).Google Scholar
  83. 83.
    J. D. Mangus and J. H. Underwood, Optical design of a glancing incidence x-ray telescope, Appl. Opt., 8, 95–102 (1969).PubMedCrossRefGoogle Scholar
  84. 84.
    J. D. Mangus, Optical design of glancing incidence extreme ultraviolet telescopes, Appl. Opt., 9, 1019–1025 (1970).PubMedCrossRefGoogle Scholar
  85. 85.
    L. P. Van Speybroeck and R. G. Chase, Design parameters of paraboloid- hyperboloid telescopes for x-ray astronomy, Appl. Opt., 11, 440–445 (1972).CrossRefGoogle Scholar
  86. 86.
    R. C. Chase and L. P. Van Speybroeck, Wolter-Schwarzchild telescopes for x-ray astronomy, Appl. Opt., 12, 1042–1044 (1973).PubMedCrossRefGoogle Scholar
  87. 87.
    W. Werner, Imaging properties of Wolter I type x-ray telescopes, Appl. Opt., 16, 764–773 (1977).PubMedCrossRefGoogle Scholar
  88. 88.
    W. Cash, D. L. Sheeley, and J. H. Underwood, Astronomical applications of grazing incidence telescopes with polynomial surfaces, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 228–233 (1979).Google Scholar
  89. 89.
    D. Korsch, Two-mirror grazing incidence telescopes with one conical surface, Opt. Eng., 18, 331–334 (1979).Google Scholar
  90. 90.
    B. Aschenbach, X-ray telescopes, Rep. Prog. Phys., 48, 579–629 (1985).CrossRefGoogle Scholar
  91. 91.
    G. S. Vaiana, L. P. Van Speybroeck, M. V. Zombek, A S. Krieger, J. K. Silk, and A. F. Timothy, The S-054 x-ray telescope experiment in Skylab, Space Sci. Instrum., 3, 19–76 (1977).Google Scholar
  92. 92.
    J. H. Underwood, J. E. Milligan, A. C. de Loach, and R. C. Hoover, S056 x-ray telescope experiment in the Skylab Apollo telescope mount, Appl. Opt., 16, 858–869 (1977).PubMedGoogle Scholar
  93. 93.
    J. L. Culhane and P. W. Sanford, X-Ray Astronomy, pp. 44–73, Faber & Faber, London (1981).Google Scholar
  94. 94.
    R. C. Catura, L. W. Acton, R. Berthelsdorf, J. L. Culhane, P. W. Sanford, and A. Franks, Cosmic x-ray telescopes for the ARIES rocket observations, Space Optics- Imaging X-Ray Optics Workshop, Proc. SPIE 184, 23–29 (1979).Google Scholar
  95. 95.
    L. P. Van Speybroeck, Einstein Observatory (HEAO-B) mirror design and performance, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 2–11 (1979).Google Scholar
  96. 96.
    R. Giacconi, P. Gorenstein, S. S. Murray, F. Schreier, F. Seward, H. Tananbaum, W. H. Tucker, and L. Van Speybroeck, The Einstein Observatory and future x-ray telescopes, in: Telescopes for the 1980’s, Annu. Rev. Monograph (G. Burbridge and A. Hewitt, eds.), pp. 195–256, Annual Reviews, Palo Alto, California (1981).Google Scholar
  97. 97.
    F. Seward and A. MacDonald, Einstein (HEAO-2) Observing Catalog CFA/HEA83039, 4th ed. (1983).Google Scholar
  98. 98.
    S. L. Mandelstam, V. G. Kurt, B.I. Valnieck, L. A. Vainstein, E. K. Sheffer, V. A. Slemzin, and I. A. Zhitnik, Instruments for x-ray astronomy, Adv. Space Res., 2, 293–299 (1983).CrossRefGoogle Scholar
  99. 99.
    J. Trümper, B. Aschenbach, and H. Bräuninger, Development of Imaging x-ray telescopes at Max-Planck-Institut Garching, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 12–19 (1979).Google Scholar
  100. 100.
    B. Aschenbach, H. Bräuninger, and G. Kettenring, Design and construction of the Rosat 5 arcsec mirror assembly, Adv. Space Res., 2, 251–254 (1983).CrossRefGoogle Scholar
  101. 101.
    M. V. Zombek, Advanced x-ray astrophysics facility (AXAF)—Performance requirements and design considerations, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 50–62 (1979).Google Scholar
  102. 102.
    J. M. Davis, A. S. Krieger, J. K. Silk, and R. C. Chase, Quest for ultrahigh resolution in x-ray optics, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 96–108 (1979).Google Scholar
  103. 103.
    R. C. Catura, W. A. Brown, and L. W. Acton, Comparison of Wolter I and Kirkpatrick-Baez x-ray optics for a Spacelab LAMAR facility, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 73–83 (1979).Google Scholar
  104. 104.
    P. Gorenstein, X-ray optics for the LAMAR facility, an overview, Space Optics Imaging X-Ray Optics Workshop, Proc. SPIE 184, 63–72 (1979).Google Scholar
  105. 105.
    J. Bleeker, J. L. Culhane, L. Koch-Miramond, H. Olthof, H. W. Schnopper, B. G. Taylor, and G. P. Whitcomb, XMM—X-Ray Multi Mirror Assessment Study, ESA Rep. SCI(83) 2 (1983).Google Scholar
  106. 106.
    D. H. Tomboulian, The experimental methods of soft x-ray spectroscopy and the valence band spectra of the light elements, in: Handbuch der Physik (S. Flügge, ed.), Vol. 30, pp. 246–304, Springer, Berlin (1957).Google Scholar
  107. 107.
    A. Franks, X-ray optics, Sci. Prog. (London), 64, 371–422 (1977).Google Scholar
  108. 108.
    D. J. Fabian, Soft X-Ray Band Spectra, Academic Press, New York (1968).Google Scholar
  109. 109.
    E. C. Bruner, Jr., L. W. Acton, W. A. Brown, S. W. Salat, A. Franks, G. Schmidtke, W. Schweizer, and R. J. Speer, X-ray spectrometer spectrograph telescope system, Space Optics-Imaging X-Ray Optics Workshop, Proc. SPIE 184, 270–277 (1979).Google Scholar
  110. 110.
    W. A. Brown, E. C. Bruner, Jr., L. W. Acton, A. Franks, M. Stedman, and R. J. Speer, Paraboloidal x-ray telescope mirror for solar coronal spectroscopy, Space Optics—Imaging X-Ray Optics Workshop, Proc. SPIE 184, 278–284 (1979).Google Scholar
  111. 111.
    J. L. Culhane and L. W. Acton, The solar x-ray spectrum, Annu. Rev. Astron. Astrophys., 12, 359–381 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alan G. Michette
    • 1
  1. 1.King’s CollegeLondonEngland

Personalised recommendations