Skip to main content
  • 166 Accesses

Abstract

Whenever technological advances have enabled the formation of images using either new energy regimes of electromagnetic radiation or different types of radiation, outstanding, sometimes revolutionary, scientific progress has been made. Examples of this are the use of radio waves and, more recently, infrared radiation in astronomy, and the use of electrons (via electron microscopy) in the biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. K. Agarwal, X-Ray Spectroscopy, Springer Series in Optical Sciences, Vol. 15, Chapters 3–5, pp. 121–239, Springer, Berlin (1979).

    Google Scholar 

  2. A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment, 2nd ed., pp. 116–262 and 472–582, Van Nostrand, Princeton, N.J. (1935).

    Google Scholar 

  3. B. L. Henke, Low energy x-ray interactions: Photoionization, scattering, specular and Bragg reflection, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds), AIP Conference Proceedings No. 75, pp. 146–155, American Institute of Physics, New York (1981).

    Google Scholar 

  4. W. T. Scott, The Physics of Electricity and Magnetism, 2nd ed., pp. 6–14, Wiley, New York (1966).

    Google Scholar 

  5. D. T. Cromer and D. Lieberman, Relativistic calculation of anomalous scattering factors for x-rays, J. Chem. Phys. 53, 1891–1898 (1970).

    CAS  Google Scholar 

  6. M. S. Jensen, Some remarks on the anomalous scattering factors for x-rays, Phys. Lett. A, 74, 41–44 (1979).

    Article  Google Scholar 

  7. R. W. James, The Optical Principles of the Diffraction of X-Rays, pp. 166–167, Cornell University Press, Ithaca, N.Y. (1965).

    Google Scholar 

  8. S. T. Manson, Theory of sub-keV photoionization cross sections, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 156–161, American Institute of Physics, New York (1981).

    Google Scholar 

  9. H. A. Lorentz, The Theory of Electrons and Its Application to the Phenomena of Light and Radiant Heat, p. 48, Dover, New York (1952).

    Google Scholar 

  10. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, The atomic scattering factor, fi + if2, for 94 elements and for the 100 to 2000 eV photon energy region, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 340–-388, American Institute of Physics, New York (1981).

    Google Scholar 

  11. J. D. Jackson, Classical Electrodynamics, 2nd ed., pp. 672–679, Wiley, New York (1975).

    Google Scholar 

  12. A. A. Sokolov and J. M. Ternov, Synchrotron Radiation, Pergamon Press, Elmsford, N.Y. (1968).

    Google Scholar 

  13. S. Krinsky, M. L. Perlman, and R. E. Watson, Characteristics of synchrotron radiation and of its sources, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 65–171, North-Holland, Amsterdam (1983).

    Google Scholar 

  14. V. L. Ginzburg and S. I. Syrovatskii, Developments in the theory of synchrotron radiation and its reabsorption, Ann. Rev. Astron. Astrophys., 7, 375–420 (1969).

    Google Scholar 

  15. N. Marks and M W. Poole, The choice of dipole magnetic field for the SRS, Daresbury Nuclear Physics Laboratory Report DL/TM129 (1974).

    Google Scholar 

  16. E.-E. Koch, D. E. Eastman, and Y. Farge, Synchrotron radiation—a powerful tool in science, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 1–63, North-Holland, Amsterdam (1983).

    Google Scholar 

  17. A. N. Chu, M. A. Piestrup, T. W. Barbee, Jr., R. H. Pantell, and F. R. Buskirk, Observation of soft x-ray transition radiation from medium energy electrons, Rev. Sci. Instrum., 51, 597–601 (1980).

    Article  CAS  Google Scholar 

  18. Y. A. Bazylev and N. K. Zhevago, Intense electromagnetic radiation from relativistic particles, Sov. Phys. Usp., 25, 565–595 (1982).

    Article  Google Scholar 

  19. A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment, 2nd ed., pp. 97–115, Van Nostrand, Princeton, N.J. (1935).

    Google Scholar 

  20. B. K. Agarwal, X-Ray Spectroscopy, Springer Series in Optical Sciences, Vol. 15, pp. 35–46. Springer, Berlin (1979).

    Google Scholar 

  21. A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment, 2nd ed., pp. 89–90, Van Nostrand, Princeton, N.J. (1935).

    Google Scholar 

  22. V. W. Slivinsky, X-ray emission from laser fusion targets, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 6–7, American Institute of Physics, New York (1981).

    Google Scholar 

  23. G. O’Sullivan, P. K. Carroll, T. J McIlrath, and M. L. Ginter, Rare-earth plasma light source for VUV applications, Appl. Opt, 20, 3043–3046 (1981).

    Article  PubMed  Google Scholar 

  24. M. Kühne, Radiometric comparison of a laser-produced plasma and a BRV-source plasma at normal incidence, Appl. Opt., 21, 2124–2128 (1982).

    Google Scholar 

  25. D. J. Nagel, C. Brown, M. Peckarar, M. L. Ginter, J. Robinson, and T. J. McIlrath, Repetitively-pulsed soft x-ray plasma source, Appl. Opt., 23, 1428–1433 (1984).

    CAS  Google Scholar 

  26. M. L. Ginter, Laser produced plasma VUV and soft x-ray light sources, in: X-Ray Microscopy (G. Schmahl and D. Rudolph, eds.), Springer Series in Optical Sciences, Vol. 43, pp. 25–29, Springer, Berlin (1984).

    Google Scholar 

  27. R. A. McCorkle, High intensity pulsed electron beam plasma source, in: Ultrasoft X-Ray Microscopy: Its Application to Biological and Physical Sciences, (D. F. Parsons, ed.), Ann. N.Y. Acad. Sci. Vol. 342, pp. 53–64 (1980).

    Google Scholar 

  28. G. Balloffet, J. Romand, and B. Vodar, An emission source of continuous spectrum extending from the visible to the extreme ultraviolet, C.R. Acad. Sci., 252, 4139–4141 (1961).

    CAS  Google Scholar 

  29. J. Bailey, Y. Ettinger, A. Fisher, and R. Feder, Evaluation of the gas puff z pinch as an x-ray lithography and microscopy source, Appl. Phys. Lett., 40, 33–35 (1982).

    Article  CAS  Google Scholar 

  30. K. W. Hill, M. Bitter, D. Eames, S. von Goeler, N. R. Sauthoff, and E. Silver, Low energy x-ray emission from magnetic fusion plasmas, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 8–24, American Institute of Physics, New York (1981).

    Google Scholar 

  31. L. P. Mix, E. J. T. Burns, D. L. Fehl, D. L. Hanson, and D. J. Johnson, Low energy x-ray emission from light ion targets, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds), AIP Conference Proceedings No. 75, pp. 25–31, American Institute of Physics, New York (1981).

    Google Scholar 

  32. J. C. Riordan, J. S. Pearlman, M. Gersten, and J. E. Rauch, Sub-kilovolt x-ray emission from imploding wire plasmas, in: Low Energy X-Ray Diagnostics (D. T. Attwood and B. L. Henke, eds.), AIP Conference Proceedings No. 75, pp. 35–43, American Institute of Physics, New York (1981).

    Google Scholar 

  33. L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York (1962).

    Google Scholar 

  34. G. O’Sullivan, The origin of line-free XUV continuum emission from laser-produced plasmas of the elements 62 ≤ Z ≤ 74, J. Phys. B, 16, 3291–3304 (1983).

    Google Scholar 

  35. D. Colombant and G. F. Tonon, X-ray emission in laser-produced plasmas, J. Appl. Phys., 44, 3524–3527 (1973).

    Article  CAS  Google Scholar 

  36. J. G. Timothy and R. P. Madden, Photon detectors for the ultraviolet and x-ray region, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 315–366, North-Holland, Amsterdam (1983).

    Google Scholar 

  37. E. Spiller, Soft x-ray optics and microscopy, in: Handbook on Synchrotron Radiation (E.-E. Koch, ed.), Vol. 1, pp. 1091–1129, North-Holland, Amsterdam (1983).

    Google Scholar 

  38. J. H. Underwood and D. T. Attwood, The renaissance of x-ray optics, Phys. Today, 37 (4), 44–52 (1984).

    Article  CAS  Google Scholar 

  39. M. Born and E. Wolf, Principles of Optics, 5th ed., pp. 38–41, Pergamon Press, Elmsford, N.Y. (1975).

    Google Scholar 

  40. E. Spiller, Low-loss reflection coatings using absorbing materials, Appl. Phys. Lett., 20, 365–367 (1972).

    Article  CAS  Google Scholar 

  41. Lord Rayleigh, Resolution in optical images, Philos. Mag. Ser. 5, 8, 261–274 (1879).

    Google Scholar 

  42. E. Abbe, Resolution of microscopes, Arch. Mikrosk. Anat., 9, 413–425 (1873).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Michette, A.G. (1986). Properties of Soft X rays. In: Optical Systems for Soft X Rays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2223-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2223-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9304-0

  • Online ISBN: 978-1-4613-2223-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics