Skip to main content

Pool-Cooled Superconducting Coils: Past, Present and Future

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 31))

  • 35 Accesses

Abstract

An overview of large magnet systems which have been studied, constructed, or operated in the last 12 years is presented and shows a substantial advance in overall current density, stored energy, and magnet complexity. The preferable coolant mode for very large magnets is still a bath of helium I, but it is clear that other coolant modes are gaining acceptance. The data base for design using stability criteria dependent on transients has expanded to the point where the risk is often acceptable, compared to the lower current density, low risk, steady state stability criteria which launched large superconducting magnet technology. The limitation imposed by structure and protection on increasing overall current density in large magnets is discussed and a simple model is used to illustrate the extreme requirements imposed on a winding without direct helium contact. The latter implies that a significant technological step is required before conduction cooling or indirect cooling will be used in the large magnets envisioned for the future and that helium contact with the conductor will remain the key ingredient for risk reduction in large magnet design.

Supported by the Office of Fusion Energy, US DOE

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Wilson, “Superconducting Magnets,” Clarendon Press, Oxford, (1983).

    Google Scholar 

  2. L. Dresner, Superconductor Stability, 1983: A Review, Cryogenics 24 (6) (1984).

    Article  Google Scholar 

  3. M. J. Leupold, Y. Iwasa, and R.J. Weggel, 32 Tesla Hybrid Magnet System, in: “Proc. of 8th Int. Conf on Magnet Technology,” (1983), J. de Physique 45:C1–41 (1984).

    Google Scholar 

  4. G. Faure-Brac, A.S. Grennberg, and H. Hebral,et al, Double Unsaturated Hell Baths for Nesting Superconducting Solenoids Producing Fields Greater Than 14 T, J. de Physique. 45:C1–75 (1984).

    Google Scholar 

  5. W. Specking and R. Flukiger, A Compact 5-kN Test Facility for Superconducting Conductors Carrying Up to 1.5 kA in Magnetic Fields Up to 14 T, J. de Physique. 45:C1–79 (1984).

    Google Scholar 

  6. K. Noto, K. Watanabe, Y. Moto, et al, A 5 mm Bore, 13 T Superconducting Magnet Employing A Prereacted Multifilamentary Nb-3Sn Conductor, J. de Physique. 45:C1–83 (1984).

    Google Scholar 

  7. I. Horvarth, G. Vecsey, P. Weymuth, et al, The Forced Flow High Field Test Facility SULTAN, J. de Physique. 45:C1–93 (1984).

    Google Scholar 

  8. J. D. Elen, W.M.P. Franken, J. A Roeterdik, et al, Upgrade of the SULTAn Superconducting Test Facility to 12 T by Three A-15 Coils, J. de Physique. 45:C1–97 (1984).

    Google Scholar 

  9. T. Ando, S. Shimamoto, T. Hiyama, et al, Test Results of 60 cm Bore Nb-3Sn Test Module Coil (TMC-I) in the Cluster Test Facility, J. de Physique 45: C1–101 (1984).

    Google Scholar 

  10. M. Nishi, T. Ando, T. Hiyama, et al, Stability Test Result of the Japanese Test Coil for the Large Coil Task at the Domestic Test J. de Physique 45: C1–131 (1984).

    Google Scholar 

  11. J.A. Zichy, B. Jakob, C. Marinucci, et al, Status Report on the Swiss LCT-Coil, J. de Physique 45: C1 - 139 (1984).

    Google Scholar 

  12. S.L. Ackerman, E.R. Kimmy, D.W. Lieurance, et al, Design and Construction Details of the 7.4 T Superconducting Metastable Magnet for the ELMO Bumpy Torus Proof-of Principle Program, J. de Physique 45: C1–185 (1984).

    Google Scholar 

  13. U. Trinks, W. Czech, G. Hinderer, et al, A Prototype Coil for the Superconducting Separated Sector Cyclotron SuSe, J. de Physique 45: C1–217 (1984).

    Google Scholar 

  14. H. Minemura, S. Mori, R. Yoshizaki, et al, Fabrication of a 3mx5m Superconducting Solenoid for the Fermilab Collider Detector Facility,J. de Physique 45: C1–333 (1984).

    Google Scholar 

  15. A. Yamamoto, H. Inoue, and H. Hirabayashi, A Thin Superconducting Solenoid Wound with the Internal Winding method for Colliding Beam Experiments,J. de Physique 45: C1–337 (1984).

    Google Scholar 

  16. H. Desportes, J. Le Bars, and C. Meuris, General Design and Conductor Study for the “ALEPH” Superconducting Solenoid, J. de Physique 45: C1–341 (1984).

    Google Scholar 

  17. T. Ogasawara, High Ramp Rate Superconducting Magnets, J. de Physique 45. C1–443 (1984).

    Google Scholar 

  18. H. Tateishi, T. Onishi, K. Komuro, et al, Development and Test Results of a 4 MJ Class Pulsed Superconducting Magnet, J. de Physique 45:C1–455 (1984).

    Google Scholar 

  19. H.J. Boenig, J.W. Dean, J.D. Rogers, et al, Tests of the 30 MJ Superconducting Magnetic Energy Storage Unit, J. de Physique 45:Cl–575 (1984).

    Google Scholar 

  20. A.M. Hatch, P.G. Marston, R.J. Thome, et al, Design Current Density Impact on Cost and Reliability of Superconducting Magnet Systems for Early Commercial MHD Power Plants, J. de Physique 45:C1–867 (1984).

    Google Scholar 

  21. G. Vecsey, I. Horvath, B. Jakob, et al, The Swiss LCT Coil, in: “Proceedings of the 1984 Applied Superconductivity Conference” IEEE Trans. Mag. MAG-2l(2):242 (1985).

    Article  Google Scholar 

  22. K.P. Jungst and L. Yan, Stability of the TESPE Superconducting Torus Magnets, IEEE Trans. Mag. MAG-21(2): 253 (1985).

    Article  Google Scholar 

  23. R.W. Boom, Y.M. Eyssa, G.E.Mcintosh, et al, Superconducting Electromagnets for Large Wind Tunnel Magnetic Suspension and Balance Systems, IEEE Trans. Mag. MAG-21(2): 444 (1985).

    Article  Google Scholar 

  24. R.Q. Apsey, D.E. Baynham, P.T.M. Clee, et al, Design of a 5.5 m Diameter Superconducting Solenoid for the Delphi Particle Physics Experiment at LEP, IEEE Trans. Mag. MAG-21(2): 490 (1985).

    Article  Google Scholar 

  25. M. Wake, T. Matsui, K. Ishibashi, et al, A Large Superconducting Thin Solenoid Magnet for Tristan Experiment (Venus) at KEK, IEEE Trans. Mag. MAG-21(2): 494 (1985).

    Article  Google Scholar 

  26. J.D. Rogers, H.J. Boenig, R.I. Schermer, et al, Operation of the 30MJ Superconducting Magnetic Energy Storage System in the Bonneville Power Administration Electrical Grid, IEEE Trans. Mag. MAG-21(2): 752 (1985).

    Article  Google Scholar 

  27. T. Onishi, H. Tateishi, K Koyama, et al, DC and Pulse Operations of 4MJ Pulsed Superconducting Magnet and its Stress Analysis, IEEE Trans. Mag. MAG-21(2): 799 (1985).

    Article  Google Scholar 

  28. K. Tachikawa, Y. Tanaka, K. Inoue, et al, Operation of 17.5 T Superconducting Magnet System in the Last 8 Years, IEEE Trans. Mag. MAG-21(2): 1048 (1985).

    Article  Google Scholar 

  29. V.C. Srivastava, High Performance TF Coil Design for the Tokamak Fusion Core Experiment (TFCX), IEEE Trans. Mag. MAG-21(2):1067 (1985)

    Google Scholar 

  30. K.R. King, Installation, Checkout and Operation of the Largest, Uniform Field, Superconducting Magnet, in: “Proceedings of the 1982 Applied Superconductivity Conference” IEEE Trans. Mag. MAG-19(3):394 (1983).

    Google Scholar 

  31. S. Shimamoto, T. Ando, T. Hiyama, et al, Domestic Test Result of the Japanese LCT Coil, IEEE Trans. Mag. MAG-19(3): 851 (1983).

    Article  Google Scholar 

  32. T.A. Kozman, S.T. Wang, Y. Chang, et al, Magnets for the Mirror Fusion Test Facility: Testing of the First Yin Yang and the Design and Development of Other Magnets, IEEE Trans. Mag. MAG-19(3): 859 (1983).

    Article  Google Scholar 

  33. P.G. Marston, A.M. Hatch, R.J. Thome, et al, Conceptual Design of a 200 MWe MHD Engineering Test Facility, IEEE Trans. Mag. MAG-19(3): 867 (1983).

    Article  Google Scholar 

  34. G.A. Danninger, D.W. Lieurance, and D.L. Walker, The Design Approach and Innovations for the Largest, Uniform Field, Superconducting Solenoid Magnet, IEEE Trans. Mag. MAG-19(3): 872 (1983).

    Article  Google Scholar 

  35. M. Masuda, H. Fujino, M. Iwamoto, et al, Intermediate Superconductive Magnetic Energy Storage, IEEE Trans. Mag. MAG-19(3): 1074 (1983).

    Article  Google Scholar 

  36. J.D. Rogers, M.H. Barron, H.J. Boenig, et al, Superconductive Magnetic Energy Storage for BPA Transmission Line Stabilization, IEEE Trans. Mag. MAG-19(3): 1078 (1983).

    Article  Google Scholar 

  37. D.E. Baldwin, Mirror Research: Status and Prospects, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p.17.

    Google Scholar 

  38. F. Arendtand W. Maurer, Hybrid Choke Coils of 17.5 T for TASKA-M, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p.784.

    Google Scholar 

  39. J.H. Schultz and N. Diatchenko, An 18 T Solenoid Concept for MFTF-B, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p.827.

    Google Scholar 

  40. C.D. Henning, B.G. Logan, J.D. Gordon,et al, Mirror Advanced Reactor Study (MARS) Final Report Summary, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p. 1314.

    Google Scholar 

  41. T. Ando, Y. Takahashi, M. Nishi, et al, 12 T Test Module Coil (TMC II) in the Cluster Test Program, in: “Proceddings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p. 1346.

    Google Scholar 

  42. S. Shimamoto, H. Tsuji, Y. Takahashi, et al, Design and Verification Tests for a 20 MJ pulsed Poloidal Coil, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p. 1358.

    Google Scholar 

  43. S.S. Kalsi, R.J. Hooper, and L. Coffman, TFCX-S Toroidal Field Coil Design Using a Superfluid Helium Cooled Winding, in: “Proceedings of 10th Symposium on Fusion Engineering,” Philadelphia (1983), p. 1736.

    Google Scholar 

  44. D.B. Montgomery, Large Magnets: Where Do We Go From Here?, in: Proc of 7th Int Conf on Magnet Technology (MT-7), IEEE Trans. Mag. MAG-17(5): 541 (1981).

    Google Scholar 

  45. H. Desportes, Superconducting Magnets for Accelerators, Beam Lines and Detectors, IEEE Trans. Mag. MAG-17(5): 1560 (1981).

    Article  Google Scholar 

  46. D.W. Lieurance, EBT-R Magnet System Concept, IEEE Trans. Mag. MAG-17(5): 1695 (1981).

    Article  Google Scholar 

  47. S.W. Van Sciver, J. Derr, A. Khalil, et al, Preliminary Magnet Design for a Stellarator Fusion Reactor, IEEE Trans. Mag. MAG-17(5): 1703 (1981)

    Article  Google Scholar 

  48. K.P. Jungst and TESPE Team, Status Report of TESPE, IEEE Trans. Mag. MAG-17(5): 1745 (1981).

    Article  Google Scholar 

  49. M.J. Leupold, J.R. Hale, Y. Iwasa, et al, 30 T Hybrid Magnet Facility at the FBNML, MIT, IEEE Trans. Mag. MAG-17(5): 1779 (1981).

    Article  Google Scholar 

  50. K. Van Hülst, Engineering and Cryogenic Aspects of the Nijmegen 25 T Hybrid Magnet, IEEE Trans. Mag. MAG-17(5): 1790 (1981).

    Article  Google Scholar 

  51. R. Aymar, G. Bon Mardion, G. Claudet, et al, TORE SUPRA-Status Report Concerning the Superconducting Magnet After the Qualifying Development Program, IEEE Trans. Mag. MAG-17(5): 1911 (1981).

    Article  Google Scholar 

  52. W. Maurer, D.C. Larbalestier, and T.V. Sviatoslavsky, Magnets for the Tandem Mirror Fusion Power Reactor WITAMIR-I, IEEE Trans. Mag. MAG-17(5): 927 (1981).

    Google Scholar 

  53. J. P. Zbasnik, D.N. Cornish, R.M. Scanlan, et al, Operation of the 8T 1 m Diameter Test Facility at LLL, IEEE Trans. Mag. MAG-17(5): 2230 (1981).

    Article  Google Scholar 

  54. S. Shimamoto, T. Ando, T. Hiyama, et al, Test Results and Perspectives of the Cluster Test Program, IEEE Trans. Mag. MAG-17(5): 2234 (1981).

    Article  Google Scholar 

  55. J.K. Ballou, R.L. Brown, W.A. Fietz, et al, Design and Testing of a Dual 8 T 380 mm/12 T 220 mm Superconducting Solenoid for ORNL, IEEE Trans. Mag. MAG-17(5): 2238 (1981).

    Article  Google Scholar 

  56. R.K. Maix, G. Meyer, Th. Roman, et al, The Superconducting Coils for the Pion Therapy Facility of the Swiss Institute for Nuclear Research, IEEE Trans. Mag. AG-17(5): 2257 (1981).

    Google Scholar 

  57. H. Brechna, E.J. Blesser, Y.P. Dmitrevskiy, et al, Superconducting Magnets for High Energy Accelerators, IEEE Trans. Mag. MAG-17(5): 2355 (1981).

    Article  Google Scholar 

  58. D.B. Montgomery, Magnet Development, in: “IEEE Special Issue on Magnetic Fusion Power,” (1981).

    Google Scholar 

  59. Z. J. J. Stekly, E.J. Lucas, and W.F.B. Punchard, A Large Toroidal Coil System for the Stanford Medical Pion Generator, in: “Proc 5th Int Conf on Mag Tech (MT-5),” Rome (1975).

    Google Scholar 

  60. “Tore Supra: Basic Design Tokamak System,” EUR-CEA-FC-1068 (1980).

    Google Scholar 

  61. “STARFIRE- A Commercial Tokamak Fusion Power Plant Study,” ANL/FPP- 80-1 (1980).

    Google Scholar 

  62. “MARS- Mirror Advanced Reactor Study,” UCRL-53480 (1984).

    Google Scholar 

  63. J.K. Ballou, T.J. McManamy, R.L. Brown, et al, Design and Construction of the EBT-P Development Coils, in: “Proc. 9th Symp Engr Probs Fusion Research,” Chicago (1981).

    Google Scholar 

  64. J.P. Zbasnik, D.N. Cornish, R.M. Scanion, et al, Background Field Coils for the High Field Test Facility, IEEE Trans. Mag. MAG 17 (1): (1981).

    Google Scholar 

  65. C.D. Henning, “Magnet Systems for Fusion Devices,” UCRL-91577 (1985).

    Google Scholar 

  66. C.D. Henning, B.G. Logan, W.L. Barr, et al, “A Tokamak Ignition/Bum Experimental Research Reactor,” UCRL-91876 (1985).

    Google Scholar 

  67. A Report on the Design of the Fermi National Accelerator Superconducting Accelerator, FNAL, Batavia, Illinois (1979).

    Google Scholar 

  68. “Report of the Reference Designs Study Group on the Superconducting Super Collider; Appendix A: Design Details,” University Research Associates, LBL (1984).

    Google Scholar 

  69. P.N. Haunbenreich, “Superconducting Magnets for Tropical Fusion Reactors,” IEEE. Trans. Mag. MAG-17 (1):(1981).

    Google Scholar 

  70. J.R. Purcell, The 1.8 T, 4.8 m ID Bubble Chamber Magnet, in: Proc of 1968 Summer Study on Superconducting Devices and Accelerators, BNL-50155 C-55) (1968).

    Google Scholar 

  71. J.R. Purcell, H. Desportes, and D. Jones, “Superconducting Magnet for the 15-foot NAL Bubble Chamber,” ANL/HEP-7215 (1973).

    Google Scholar 

  72. F. Wittgenstein, Development Program for the Magnet of the European 3.7 m Bubble Chamber, in: “Proc of the 1968 Summer Study on Superconducting Devices and Accelerators,” BNL-50155(C-55) (1968).

    Google Scholar 

  73. S.T. Wang, et al, Fabrication Experiences and Operating Characteristics of the USSCMS Superconducting Dipole Magnet for MHD Research, in: “Advances in Cryogenic Engineering,” vol. 23, Plenum Press, New York (1977).

    Google Scholar 

  74. K. Fushimi, Experiment on MHD Generator with a Large Scale Superconducting Magnet (ETL Mark V), in: “14th Symp on the Engineering Aspects of MHD,” UTSI Tullahoma, Tennessee (1974).

    Google Scholar 

  75. Cask Commercial Demo Plant MHD Superconducting Magnet System-Conceptual Design Final Report, Francis Bitter National Laboratory, CASK-GDC-031 (1979).

    Google Scholar 

  76. Z.J.J. Stekly,“The Performance of a Large MHD Type Stabilized Superconducting Magnet,” Les Champs Magnetiques Intenses, Grenoble (1966).

    Google Scholar 

  77. Z.J.J. Stekly and R.J. Thome, Large Scale Applications of Superconducting Coils, in: “Proc of the IEEE,” vol 61(1), (1973).

    Article  Google Scholar 

  78. A.R. Kantrowitz and Z.J.J. Stekly, A New Principle for the Construction of Stabilized Superconducting Coils, Appl. Phys. Let. 6 (1965).

    Google Scholar 

  79. B.J. Maddock, G.B. James, and W.T. Norris, Superconducting Composites: Heat Transfer and Steady State Stabilization, Cryogenics (1969).

    Google Scholar 

  80. C.D Henning, Superconducting Coils for Mirror Fusion, IEEE Trans. Mag. MAG-15(1): (1979).

    Google Scholar 

  81. M. Morpurgo, “The Design of the Superconducting Magnet for the ‘Omega’ Project,” Particle Accelerators, vol 1 (1970).

    Google Scholar 

  82. P.H. Eberhard, M. Alston-Garnjost, M.A. Green, et al, Quenches in Large Superconducting Magnets, in: “Proc 6th Inter Conf Mag Tech (MT-6),” Bratislava, Czech (1977).

    Google Scholar 

  83. Z.J.J. Stekly, R.J. Thome, E.J. Lucas, et al, Design Considerations for High Current Density Saddle Magnets for MHD, in: “4th ICEC,” Eindhoven (1972).

    Google Scholar 

  84. M.C. Jones and V.D. Arp, Review of Hydrodynamics and Heat Transfer for Large Helium Cooling Systems, Cryogenics 18 (8): (1978).

    Google Scholar 

  85. W.M. Stacey, ed., “US Contribution to the Phase IIA, Part 2,” INTOR Workshop, 1983–85, Georgia Inst of Tech (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Thome, R.J., Dawson, A.M. (1986). Pool-Cooled Superconducting Coils: Past, Present and Future. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2213-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2213-9_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9299-9

  • Online ISBN: 978-1-4613-2213-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics