Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials

  • J. L. Wise
  • L. C. Chhabildas


Laser interferometer systems provide a means for probing the refractive index of transparent specimens subjected to dynamic compression. Previous interferometer measurements of optical properties under shock loading are reviewed for polymethyl methacrylate, fused silica, sapphire, nitromethane, and an aqueous solution of zinc chloride; various degrees of departure from Gladstone-Dale behavior are noted for these materials. In addition, a detailed summary of recent optical studies of lithium fluoride (LiF) is provided. Interferometer data from plate-impact experiments verify sustained LiF transparency for Hugoniot stresses to at least 160 GPa, and establish the variation of LiF refractive index for shock amplitudes ranging from 1.58 to 115 GPa. The refractive-index data for LiF agree with earlier static and shock-wave data, and exhibit a pronounced deviation from predictions based on the Gladstone-Dale, Lorentz-Lorenz, and Drude relations. A modified form of the Gladstone-Dale relation is presented which correctly models the latest LiF measurements. Potential applications of LiF and other window materials to dynamic high-pressure experimentation are discussed.


Sandia National Laboratory Zinc Chloride Lithium Fluoride Velocity Correction Shock Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Barker and R. E. Hollenbach, Laser Interferometer for Measuring High Velocities of Any Reflecting Surface, J. Appl. Phys. 43: 4669 (1972).CrossRefGoogle Scholar
  2. 2.
    L. M. Barker, Fine Structure of Compressive and Release Wave Shapes in Aluminum Measured by the Velocity Interferometer Technique, in: “Behaviour of Dense Media under High Dynamic Pressures,” Gordon and Breach, New York (1968).Google Scholar
  3. 3.
    L. M. Barker and R. E. Hollenbach, Shock-Wave Studies of PMMA, Fused Silica, and Sapphire, J. Appl. Phys. 41: 4208 (1970).CrossRefGoogle Scholar
  4. 4.
    L. M. Barker and K. W. Schuler, Correction to the Velocity-per-Fringe Relationship for the VISAR Interferometer, J. Appl. Phys. 45: 3692 (1974).CrossRefGoogle Scholar
  5. 5.
    D. R. Hardesty, On the Index of Refraction of Shock-Compressed Liquid Nitromethane, J. Appl. Phys. 47: 1994 (1976).CrossRefGoogle Scholar
  6. 6.
    J. R. Asay and D. B. Hayes, Shock-Compression and Release Behavior Near Melt States in Aluminum, J. Appl. Phys. 46: 4789 (1975).CrossRefGoogle Scholar
  7. 7.
    L. M. Lee, Shock-Induced Index-of-Refraction Variations in PMMA, Sapphire, and Lithium Fluoride, Ktech Corp. Report TR-76-04 (1976).Google Scholar
  8. 8.
    Lalit C. Chhabildas and James R. Asay, Rise-time Measurements of Shock Transitions in Aluminum, Copper, and Steel, J. Appl. Phys. 50: 2749 (1979).CrossRefGoogle Scholar
  9. 9.
    Robert E. Setchell, Index of Refraction of Shock-Compressed Fused Silica and Sapphire, J. Appl. Phys. 50: 8186 (1979).CrossRefGoogle Scholar
  10. 10.
    Robert E. Setchell, Ramp-Wave Initiation of Granular Explosives, Combust. Flame 43: 255 (1981).CrossRefGoogle Scholar
  11. 11.
    Jerry Wackerle, Shock-Wave Compression of Quartz, J. Appl. Phys. 33: 922 (1962).CrossRefGoogle Scholar
  12. 12.
    L. C. Chhabildas and D. E. Grady, Shock Loading Behaviour of Fused Quartz, in: “Shock Waves in Condensed Matter-1983,” J. R. Asay, R. A. Graham, and G. K. Straub, ed., North-Holland, Amsterdam (1984).Google Scholar
  13. 13.
    R, A. Graham and W. P. Brooks, Shock-Wave Compression of Sapphire from 15 to 420 kbar. The Effects of Large Anisotropic Compressions, J. Phys. Chem, Solids 32: 2311 (1971).CrossRefGoogle Scholar
  14. 14.
    J. L. Wise, Refractive Index and Equation of State of a Shock-Compressed Aqueous Solution of Zinc Chloride, in: “Shock Waves in Condensed Matter- 1983, ” J. R. Asay, R. A. Graham, and G. K. Straub, ed., North-Holland, Amsterdam (1984).Google Scholar
  15. 15.
    Lalit C. Chhabildas, The Sandia Shock Thermodynamics Applied Research Facility, in: “Shock Waves in Condensed Matter-1981,” W. J. Nellis, L. Seaman, and R. A, Graham, ed., American Institute of Physics, New York (1982).Google Scholar
  16. 16.
    The Harshaw Chemical Company, Crystal & Electronic Products, Solon, Ohio.Google Scholar
  17. 17.
    W. Herrmann, Development of a High Strain Rate Constitutive Equation for 6061-T6 Aluminum, Sandia Report SLA-73-0897 (1974).Google Scholar
  18. 18.
    R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The Equation of State of Solids from Shock Wave Studies, in: “High-Velocity Impact Phenomena,” Ray Kinslow, ed., Academic Press, New York (1970).Google Scholar
  19. 19.
    W. J. Carter, Hugoniot Equation of State of Some Alkali Halides, High Temp.-High Press. 5: 313 (1973).Google Scholar
  20. 20.
    J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, Effects of Point Defects on Elastic Precursor Decay in LiF, J. Appl. Phys. 43: 2132 (1972).CrossRefGoogle Scholar
  21. 21.
    Max Herzberger and Calvin D. Salzberg, Refractive Indices of Infrared Optical Materials and Color Correction of Infrared Lenses, J. Opt. Soc. Am. 52: 420 (1962).CrossRefGoogle Scholar
  22. 22.
    S. B. Kormer, Optical Study of the Characteristics of Shock-Compressed Condensed Dielectrics, Sov. Phys. Usp. 11: 229 (1968).CrossRefGoogle Scholar
  23. 23.
    K. Vedam and E. D. D. Schmidt, Effect of Hydrostatic Pressure on the Refractive Index of LiF, Solid State Commun. 3: 373 (1965).CrossRefGoogle Scholar
  24. 24.
    D. E. Grady, Sandia National Laboratories, private communication.Google Scholar
  25. 25.
    A. S. Abou-Sayed, R. J. Clifton, and L. Hermann, The Oblique-Plate Impact Experiment, Exp. Mech. 16: 127 (1976).CrossRefGoogle Scholar
  26. 26.
    Lalit C. Chhabildas, Dynamic Transverse Particle Velocity Measurements using Interferometric Techniques, in: “High Speed Photography, Videography, and Photonics,” Dennis L. Paisley, ed., Proc. SPIE 427 (1983).Google Scholar
  27. 27.
    L. M. Barker, High-Pressure Quasi-Isentropic Impact Experiments, in: “Shock Waves in Condensed Matter-1983,” J. R. Asay, R. A. Graham, and G. K. Straub, ed., North-Holland, Amsterdam (1984).Google Scholar
  28. 28.
    L. M. Barker, Sandia National Laboratories, private communication.Google Scholar
  29. 29.
    William G. Von Holle, Shock Wave Diagnostics by Time-Resolved Infrared Radiometry and Non-Linear Raman Spectroscopy, in: “Shock Waves in Condensed Matter-1983,” J. R. Asay, R. A. Graham, and G. K. Straub, ed., North-Holland, Amsterdam (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. L. Wise
    • 1
  • L. C. Chhabildas
    • 1
  1. 1.Thermomechanical and Physical DivisionSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations