Skip to main content

Viscoelasticity of Calf Hide Impregnated with Radiation-Polymerized Polyhydroxyethyl Methacrylate

  • Chapter
Renewable-Resource Materials

Abstract

In order to combine the desirable properties of synthetic polymers (elasticity and water, chemical, and biological resistance) with those of animal hide (strength, flexibility, and dyability), composites can be formed between the two types of material. Actually, adding materials to hide has long been an aspect of traditional leathermaking, usuaslly to increase thermal stability and to make the hide more hydrophobic. Newer uses for hide material require it to be stable but compatible with aqueous environments. Appropriate compositions can be formed from leather and hydrophilic polymers. Composites of collagen with poly(hydroxyethyl methacrylate) (polyHEMA or pHEMA) (1), with starch (2), or with Polyacrylamide (3) have been described for surgical implants with blood compatibility and lack of tissue inflammatory reactions. Other uses for these compositions may be found as substrata for cells and enzymes in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Chvapil, R. Holusa, K. Kliment, and M. Stoll, Some chemical and biological characteristics of a new collagen-polymer compound material, J. Biomed. Mater. Res. 3: 315 (1969).

    Article  CAS  Google Scholar 

  2. P. N. Sawyer, B. Staczewski, and D. Kirschenbaum. The development of polymeric cardiovascular collagen prostheses, Artif. Organs 1: 83 (1977).

    Article  CAS  Google Scholar 

  3. K. P. Rao, K. T. Joseph, and Y. Nayudamma, Characterization of the collagen-vinyl copolymers prepared by the eerie ion method. I. Solution properties, J. Polym. Sci., Part A1, 9: 3199 (1971).

    Article  CAS  Google Scholar 

  4. E. F. Jordan, Jr., B. Artymyshyn, and S. H. Feairheller, Polymer-leather composites. IV. Mechanical properties of selected acrylic polymer-leather composites, J. Appl. Polym. Sci., 26: 463 (1981).

    Article  CAS  Google Scholar 

  5. R. E. Baier and W. A. Zisman, Wetting properties of collagen and gelatin surfaces, in Applied Chemistry and Protein Interfaces, R. E. Baier, Ed., Advances in Chemistry Series 145, 155–174 (1975).

    Chapter  Google Scholar 

  6. M. M. Taylor, E. J. Diefendorf, M. V. Hannigan, B. Artymyshyn, J. G. Phillips, S. H. Feairheller, and D. G. Bailey, Wet process technology. III. Development of a standard process, J. Amer. Leather Chem. Assn. (In Press).

    Google Scholar 

  7. W. V. Gerasimowicz, K. B. Hicks, and P. E. Pfeffer, Macromolecules (In press).

    Google Scholar 

  8. P. E. Pfeffer, D. G. Bailey, and E. F. Jordan, Evidence for limited phase homogeneity in PMMA “grafted” chrome-tanned leather by 13C CP-MAS, NMR, 25th Experimental NMR Conference, Wilmington, DE 8–12 April, 1984:

    Google Scholar 

  9. M. J. Sullivan, and G. E. Maciel, Anal. Chem. 54: 1601 (1982).

    Google Scholar 

  10. A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 59: 569 - 590 (1973).

    Article  CAS  Google Scholar 

  11. S. J. Opella and M. H. Frey, J. Am. Chem. Soc. 101: 5854 (1979).

    Article  CAS  Google Scholar 

  12. M. Takayanagi, Viscoelastic properties of crystalline polymers, Mem. Fac. Eng, Kyushu Univ. 23: 41 (1963).

    Google Scholar 

  13. O. Wichterle and D. Lim, Hydrophilic gels for biological use, Nature, 185: 117 (1960).

    Article  Google Scholar 

  14. O. Wichterle, Hydrogels, in “Encylopedia of Polymer Science and Technology,” N. M. Bikales, ed., Wiley, New York (1971).

    Google Scholar 

  15. P.L. Kronick, P. Buechler, Frank Scholnick, and Bohdan Artymyshyn, Dynamic mechanical properties of polymer-leather composites, J. Appl. Polym Sci. 30: 3095 (1985).

    Article  CAS  Google Scholar 

  16. J. A. Lowell and P. B. Buechler, Studies on impregnation. Determination of the depth of polymer penetration, J. Am. Leather Chem. Assoc. 60: 519 (1965).

    CAS  Google Scholar 

  17. M. Takayanagi, S. Uemura, and S. Minimi, Application of the equivalent-model method to dynamic rheo-optical properties of crystalline polymer, J. Polym. Sci. Part C5, 113 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kronick, P.L., Artymyshyn, B., Buechler, P.R., Wise, W. (1986). Viscoelasticity of Calf Hide Impregnated with Radiation-Polymerized Polyhydroxyethyl Methacrylate. In: Carraher, C.E., Sperling, L.H. (eds) Renewable-Resource Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2205-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2205-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9295-1

  • Online ISBN: 978-1-4613-2205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics