Skip to main content

Long Range, Low Frequency Acoustic Backscattering: A Survey

  • Chapter
Ocean Seismo-Acoustics

Part of the book series: NATO Conference Series ((MARS,volume 16))

Abstract

At very low frequencies the signals observed from an impulsive source are dominated by scattering from the seafloor. Experiments demonstrating this have ranged from echoes locally reflected by seamounts to transoceanic reverberation from continental margins. Receivers have included omnidirectional sensors, towed line arrays, two dimensional horizontal arrays and vertical arrays.

Backscattering highlights have been observed from known topographic features as well as from tantalizing unknown ones. This suggests the use of backscattering signals for reconnaissance in poorly charted areas. One of the major uncertainties lies in the relation of the backscattering structure as a function of frequency to the topography (rms roughness and bathymetry). The experiments on acoustic backscattering and their data analyses are surveyed in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luskin, B. M., Landisman, M., Tirey, G. B. and Hamilton, G. R., “Submarine topographic echoes from explosive sound,” Bulletin Geological Soc.Am., 63, 1053–1068, [ 1952 ].

    Article  Google Scholar 

  2. Mellen, R. H. and Marsh, H. W., “Underwater acoustic reverberation in the Arctic Ocean,” J. Acoust. Soc. Am., 56, 80–82, [ 1963 ].

    Article  Google Scholar 

  3. Kutschale, H., “Arctic hydroacoustics,” Arctic, 22, 246–264, [ 1969 ]

    Google Scholar 

  4. Northrop, J., “Submarine topographic echoes from CHASE V,” J. Geophys. Res., 73, 12, [ 1968 ].

    Google Scholar 

  5. Goertner, J. A. and Blatstein, I. M., “Computer model for predicting acoustic reverberation from underwater explosions,” Proc. OCEANS ‘75,, 227–232, IEEE Publications, [ 1975 ].

    Google Scholar 

  6. Blatstein, I. M., “Ocean basin reverberation at very long frequencies,” J.Acoust.Soc.Am., 64, S44–S45, [ 1978 ].

    Article  Google Scholar 

  7. Goertner, J. A., “Computer model predictions of ocean basin reverberation for large underwater explosions,” Bottom Interacting Ocean Acoustics, ed. W. A. Kuperman and Jensen, F. P., 593–608, Plenum Press, New York [ 1980 ].

    Google Scholar 

  8. Spindel, R. and Heirtzler, J. H., “Long range echo rangings,” J. Geophys. Res., 77, 35, 7073–7088, [ 1972 ].

    Article  Google Scholar 

  9. Dyer, I., Baggeroer, A. B., Zittel, J. D. and Williams, R. J., “Acoustic backscattering from the basin and margins of the Arctic Ocean,” J. Geophys. Res., 87, C12, 9477–9488, [ 1982 ].

    Article  Google Scholar 

  10. Zittel, J. D., “Ocean basin reverberation,” Engineer Thesis, Mass. Inst, of Tech., Cambridge, Mass. and Woods Hole Oceanographic Inst., Woods Hole, Mass., [ 1979 ].

    Google Scholar 

  11. Williams, R. J., “Backscattering of low frequency sound from the topographic features of the Arctic Ocean basin,” S.M. Thesis, Mass. Inst, of Tech., Cambridge, Mass. [ 1981 ].

    Google Scholar 

  12. Baggeroer, A. B. and Dyer, I., “Fram II in the Eastern Arctic,” EOS. Trans. Am. Geophys. Union, 61, 217–222, [ 1980 ].

    Google Scholar 

  13. Schifter, D., Franchi, E., Griffin, J. and Adams, B., “Hydrographicreconaissance of large undersea topography using scattered acoustic energy,” J. Acoust. Soc. Am., S66, pp. S25, [ 1979 ].

    Article  Google Scholar 

  14. Erskine, F. T. and Franchi, E. R., “Rapid, basin-wide surveying of large undersea topography using scattered acoustic energy,” Proc. OCEANS ‘84, Vol.2, pp. 990–995, IEEE Publications, [1984],

    Google Scholar 

  15. Berkson, J. M., Akal, T., and Berrou, “Techniques for measuring backscattering from the sea floor with an array,” Adaptive Methods in Underwater Acoustics, ed. H. Urban, [ 1985 ].

    Google Scholar 

  16. Baggeroer, A. B., “Sonar signal processing,” in Applications of Digital Signal Processing, ed. A. V. Oppenheim, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1978.

    Google Scholar 

  17. Capon, J., “High resolution frequency wavenumber spectral analysis,” Proc. IEEE, 57, 1408–1418, [ 1969 ].

    Article  Google Scholar 

  18. Kay, S. M. and Marple, S. L., “Spectrum analysis - a modern perspective,” Proc. IEEE, 69, 1380–1419, [ 1981 ].

    Article  Google Scholar 

  19. Proc. IEEE, special issue on spectral estimation, 70, [ Sept. 1980 ]

    Google Scholar 

  20. Berrou, J. L. and Wagstaff, R. A., “A robust iterative technique for high-resolution spatial processing and spectral estimation,” in: High Resolution Spatial Processing, ed. R. Wagstaff and A. Baggeroer, 215–239, [ 1985 ].

    Google Scholar 

  21. Weston, D. E., “Underwater explosions as acoustic sources,” Proc. Phys. Soc., 76, 233–249, [ 1960 ].

    Article  Google Scholar 

  22. Wakeley, J., Jr., “Pressure signature model for an underwater explosive charge,” U. S. Navy Journal of Underwater Acoustics, 27, 445–451, [ 1977 ].

    Google Scholar 

  23. Gaspin, J. B., Goertner, J. A., and Blatstein, I. M., The determination of acoustic source levels for shallow underwater explosions, J. Acoust. Soc. Am., 66, 1446–1452, [ 1979 ].

    Article  Google Scholar 

  24. Bass, F. G. and Fuks, I. M., Wave Scattering from Statistically Rough Surfaces, Pergamon Press, New York, [ 1979 ].

    Google Scholar 

  25. Tolstoy, I. and Clay, C. S., Ocean Acoustics: Theory and Experiment in Underwater Sound, McGraw-Hill, New York, [ 1966 ].

    Google Scholar 

  26. Chapman, D. M. F., “An improved Kirchoff formula for reflection loss at a rough ocean surface at low grazing angles,” J. Acoust. Soc. Am., 73, 520–527, [ 1983 ].

    Article  Google Scholar 

  27. Duckworth, G. L. and Baggeroer, A. B., “Estimation of ice surface scattering and acoustic attenuation in Arctic sediments from long range propagation data,” (this volume), [ 1985 ].

    Google Scholar 

  28. Jebsen, G. M. and Medwin, H., “On the failure of the Kirchoff assumption in backscatter,” J. Acoust. Soc. Am., 72, 1607–1611, [ 1982 ].

    Article  Google Scholar 

  29. Biot, M. A. and Tolstoy, I., “Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction,” J. Acoust. Soc. Am., 29, 381–391, [ 1957 ].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Baggeroer, A.B., Dyer, I. (1986). Long Range, Low Frequency Acoustic Backscattering: A Survey. In: Akal, T., Berkson, J.M. (eds) Ocean Seismo-Acoustics. NATO Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2201-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2201-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9293-7

  • Online ISBN: 978-1-4613-2201-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics