Skip to main content

Linear and Nonlinear Ocean Acoustic Propagation Models

  • Chapter
Ocean Seismo-Acoustics

Part of the book series: NATO Conference Series ((MARS,volume 16))

Abstract

A review of basic linear ocean sound propagation models as derived from fluid dynamics is presented. By retaining nonlinear terms in the equations of fluid dynamics a nonlinear time domain wave equation is then derived. A unidirectional approximation leads to a nonlinear time domain version of the parabolic equation, a nonlinear progressive wave equation (NPE), which can treat propagation of finite amplitude signals in a refracting medium in a wave theoretic sense and hence includes propagation through a caustic. In the limit of infinitesimal acoustics a linear time domain parabolic equation results which can be directly solved numerically without Fourier synthesis. Inserting a harmonic solution into this equation and taking the far field limit reduces this equation to the standard parabolic equation. Linear and nonlinear time domain examples are presented including the propagation of a shock wave through a caustic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urick, R. J., Principles of Underwater Sound, 3rd Edition, McGrawHill Book Company, New York, 1983, p. 2.

    Google Scholar 

  2. Lasky, M., “Review of underwater acoustic to 1950,” J. Acoust. Soc. Am. 61, 283–297 (1977).

    Article  Google Scholar 

  3. Pierce, A.D., Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill Book Company, New York, 1981, pp. 3–6.

    Google Scholar 

  4. Clay, C. S. and Medwin, H., Acoustical Oceanography, Wiley-Interscience, New York, 1977, pp. 395–404.

    Google Scholar 

  5. McDonald, B. E., and Kuperman, W. A., “Time Domain Solution of the Parabolic Equation Including Nonlinearity,” Proc. Workshop on Comp. Ocean Acoust., Yale Univ. (eds. M. Schultz and D. Lee ), August 1984.

    Google Scholar 

  6. McDonald, B. E., and Kuperman, W. A., “Time Domain Solution of Nonlinear Pulse Propagation,” Proc. NATO Adv. Res. Workshop on Hybrid Formulation of Wave Propagation and Scattering, IAFE, Castel Gandolfo, Italy (ed. L. B. Felson ), Sept. 1983.

    Google Scholar 

  7. McDonald, B. E., and Kuperman, W. A., “Broadband Pulse Propagation in the Time Domain,” Proc. IMACS Symp. on Computing Methods in Ocean Acoustics, Oslo, August 1985.

    Google Scholar 

  8. McDonald, B. E., and Ambrosiano, J., “Higher Order Upwind Flux Methods for Scalar Hyperbolic Conservation Laws,” J. Comp. Phys. 56, 448 (1984).

    Article  Google Scholar 

  9. Kuperman, W. A., and Jensen, F. B., “Deterministic propagation model I Fundemental principles,” in Underwater Acoustics and Signal Processing, edited by Leif Bjorno (D. Reidel Publishing Co., Dordrect, 1980 ).

    Google Scholar 

  10. Jensen, F. B., and Kuperman, W. A., “Consistency tests of acoustic propagation models,” SACLANT ASW Research Centre, La Specia, Italy, SM-157 (1982).

    Google Scholar 

  11. Jensen, F. G., “Numerical Models in Underwater Acoustics,” Proc. NATO Adv. Res. Workshop on Hybrid Formulation of Wave Propagation and Scattering, IAFE, Castel Gandolfo, Italy (ed. L. B. Felsen ), Sept. 1983.

    Google Scholar 

  12. Officer, C. B., Introduction to the Theory of Sound Transmission. ( McGraw-Hill, New York, 1958 ).

    Google Scholar 

  13. Tolstoy, I., and Clay, C. S., Ocean Acoustics: Theory arid Experiment in Underwater Sound. ( McGraw-Hill, New York, 1966 ).

    Google Scholar 

  14. Tucker, D. G., and Gazey, B. K., Applied Underwater Acoustics. (Pergamon Oxford, 1966 ).

    Google Scholar 

  15. Tolstoy, I., Wave Propagation. ( McGraw-Hill, New York, 1973 ).

    Google Scholar 

  16. Urick, R. J., Principles of Underwater Sound. ( McGraw-Hill, New York, 1975 ).

    Google Scholar 

  17. Clay, C. S., and Medwin, H., Acoustical Oceanography. ( Wiley-Interscience, New York, 1977 ).

    Google Scholar 

  18. Keller, J. B., and Papadakis, J. S., (eds.) Wave Propagation and Underwater Acoustics. ( Springer-Verlag, Berlin, 1977 ).

    Google Scholar 

  19. De Santo, J. A., (ed.), Ocean Acoustics. ( Springer-Verlag, Berlin, 1979 ).

    Google Scholar 

  20. Brekhovskikh, L. M., Wave in Layered Media. ( Academic, New York, 1980 ).

    Google Scholar 

  21. Brekhovskikh, L. M., and Lysanov, Yu, Fundamentals of Ocean Acoustics. ( Springer-Verlag, Berlin, 1982 ).

    Google Scholar 

  22. DiNapoli, F. R., and Deavenport, R. L., “Theoretical and numerical Green’s function field solution in plane multilayered medium,” J. Acoust. Soc. Am. 67, 92–105, (1980).

    Article  Google Scholar 

  23. Kutschale, H. W., “Rapid computation by wave theory of propagation loss in the Arctic Ocean,” Rpt. CU-8-73, Columbia University, Palisades, N. Y., (1973).

    Google Scholar 

  24. Schmidt, H., and Jensen, F. B., “Efficient numerical solution technique for wave propagation in horizontally stratified ocean environments,” Rpt. SM-173, SACLANT ASW Research Centre, La Specia, Italy (1984).

    Google Scholar 

  25. Evans, R. B., “A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom,” J. Acoust. Soc. Am., 74, 188–195 (1983).

    Article  Google Scholar 

  26. Tappert, F. D., “The parabolic Approximation method,” in J. B. Keller and J. S. Papadakis, Ed., Wave Propagation and Underwater Acoustics, Springer-Verlag, Berlin, 1977, pp. 224–287.

    Chapter  Google Scholar 

  27. Jensen, F. B., and Krol, H. R., “The use of the parabolic equation method in sound propagation modelling,” Rpt. SM-72, SACLANT ASW Research Centre, La Specia, Italy (1975).

    Google Scholar 

  28. Davis, J. A., White, D., and Cavanagh, R. C., “NORDA parabolic equation workshop,” Rpt. TN-143, Naval Ocean Research and Development Activity, NSTL Stn, MS (1982).

    Google Scholar 

  29. Lee, D., and Gilbert, K. E., “Recent progress in modeling bottom interacting sound propagation with parabolic Equations,” in Ocean 82 Conference Record (MTS-IEEE, Washington, D. C. 1982 ), pp. 172–177.

    Google Scholar 

  30. Rogers, P. H., and Gardner, J. H., “Propagation of Sonic Booms in the Thermosphere,” J. Acoust. Soc. Am. 67, 78–91 (1980).

    Article  Google Scholar 

  31. McDonald, B. E., and Ambrosiano, J., “Self-Similar Solution for Spherical Weak Shocks,” J. Acoust. Soc. Am. Suppl. 1, Vol. 77 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kuperman, W.A., McDonald, B.E. (1986). Linear and Nonlinear Ocean Acoustic Propagation Models. In: Akal, T., Berkson, J.M. (eds) Ocean Seismo-Acoustics. NATO Conference Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2201-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2201-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9293-7

  • Online ISBN: 978-1-4613-2201-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics