Skip to main content

Random and Pseudorandom Sequences

  • Chapter
Data Transportation and Protection

Part of the book series: Applications of Communications Theory ((ACTH))

  • 79 Accesses

Abstract

The study of random sequences is required by many aspects of data transmission. Synchronization and privacy are but two of these. In this chapter we examine the behavior of random sequences and conclude with a study of the m-sequence—an often used approximation to a random sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arazi, B. (1977), Decimation of m-Sequence Leading to Any Desired Phase Shift, Electronics Letters, Vol. 13, No. 7, pp. 213–215, March.

    Article  MathSciNet  Google Scholar 

  • Ball, J., A. Spittle, and H. Liu (1975), High-Speed m-Sequence Generation: A Further Note, Electronics Letters, Vol. 11, No. 5, pp. 107–108, March.

    Article  Google Scholar 

  • Berlekamp, E. (1967), Factoring Polynomials Over Finite Fields, BSTJ, pp. 1853–1859, October.

    Google Scholar 

  • Berlekamp, E. (1968), Algebraic Coding Theory, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Berlekamp, E. (1970), Factoring Polynomials Over Large Finite Fields, Mathematics of Computation, Vol. 24, No. 111, pp. 713–735, July.

    Article  MathSciNet  Google Scholar 

  • Blom, G. and D. Thorburn (1982), How Many Random Digits are Required Until Given Sequences Are Obtained?, Journal of Applied Probability, Vol. 19, pp. 518–531.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantor, D and H. Zassenhaus (1981), A New Algorithm for Factoring Polynomials Over Finite Fields, Mathematics of Computation, Vol. 36, No. 154, pp. 587–592, April.

    Article  MathSciNet  MATH  Google Scholar 

  • Charney, H. and C. Mengani (1961), Generation of Linear Binary Sequences, RCA Review, pp. 420–430, September.

    Google Scholar 

  • Davies, A. (1965), Delayed Versions of Maximal-Length Linear Binary Sequences, Electronics Letters, Vol. 1, No. 3, pp. 61–62, May.

    Article  Google Scholar 

  • Davies, A. (1968), Calculations Relating to Delayed m-Sequences, Electronics Letters, Vol. 4, No. 14, pp. 291–292, July.

    Article  Google Scholar 

  • Davis, W. (1966), Automatic Delay Changing Facility for Delayed m-Sequences, Proceedings of the IEEE, Vol. 54, pp. 913–914, June.

    Article  Google Scholar 

  • Douce, J. (1968), Delayed Versions of m-Sequences, Electronics Letters, Vol. 4, No. 12, p. 254, June.

    Article  Google Scholar 

  • Gardiner, A. (1965), Logic P.R.B.S. Delay Calculator and Delayed-Version Generator with Automatic Delay-Changing Facility, Electronics Letters, Vol. 1, No. 5, pp. 123–125, July.

    Article  Google Scholar 

  • Gardner, M. (1979), Mathematical Games, Scientific American, pp. 120–125, October.

    Google Scholar 

  • Gold, R. (1966), Characteristic Linear Sequences and Their Coset Functions, Journal SIAM, Vol. 14, No. 5, pp. 980–985, September.

    MathSciNet  MATH  Google Scholar 

  • Golomb, S. (1967), Shift Register Sequences, Holden-Day, Oakland, CA.

    MATH  Google Scholar 

  • Golomb, S. (1969), Irreducible Polynomials, Synchronization Codes, Primitive Necklaces, and the Cyclotomic Algebra, in Combinatorial Mathematics and Its Applications, The University of North Carolina Press, Chapel Hill, Chap. 21, pp. 358–370. ( Proceedings of the conference held at the University of North Carolina, Chapel Hill, NC, April. )

    Google Scholar 

  • Golomb, S. (1980), On the Classification of Balanced Binary Sequences of Period 2″–1, IEEE Transactions on Information Theory, Vol. 26, No. 6, pp. 730–732, November.

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, J. (1974), High-Speed m-Sequence Generation, Electronics Letters, Vol. 10, No. 23, pp. 480–481, November.

    Article  Google Scholar 

  • Hershey, J. (1980), Implementation of MITRE Public Key Cryptographic System, Electronics Letters, Vol. 16, No. 24, pp. 930–931, November.

    Article  MathSciNet  Google Scholar 

  • Hershey, J. (1982), Proposed Direct Sequence Spread Spectrum Voice Techniques for the Amateur Radio Service, NTIA Report 82–111.

    Google Scholar 

  • Kemeny, J. and J. Snell (1960), Finite Markov Chains, Van Nostrand, New York.

    MATH  Google Scholar 

  • Kemeny, J., J. Snell, and A. Knapp (1966), Denumerable Markov Chains, Van Nostrand, New York.

    MATH  Google Scholar 

  • Knuth, D. (1969), The Art of Computer Programming, Seminumerical Algorithms, Addison-Wesley, Reading, MA, Vol. 2, pp. 381–396.

    Google Scholar 

  • Lempel, A. and W. Eastman (1971), High Speed Generation of Maximal Length Sequences, IEEE Transactions on Computers, pp. 227–229, February.

    Google Scholar 

  • Luenberger, D. (1979), Introduction to Dynamic Theory—Theory, Models and Applications, Wiley, New York, pp. 285–289.

    Google Scholar 

  • MacDuffie, C. (1940), An Introduction to Abstract Algebra, Wiley, New York.

    Google Scholar 

  • Marsh, R. (1957), Table of Irreducible Polynomials Over GF(2) Through Degree 19, U.S. Department of Commerce, Office of Technical Services, Washington, DC.

    Google Scholar 

  • Meyer, C. and W. Tuchman (1972), Pseudorandom Codes Can Be Cracked, Electronic Design, Vol. 20, No. 23, pp. 74–76, November.

    Google Scholar 

  • Miller, A., A. Brown, and P. Mars (1977), A Simple Technique for the Determination of Delayed Maximal Length Linear Binary Sequences, IEEE Transactions on Computers Vol. C-26, No. 8, pp. 808–811, August.

    Article  Google Scholar 

  • Moenck, R. (1977), On the Efficiency of Algorithms for Polynomial Factoring, Mathematics of Computation, Vol. 31, No. 137, pp. 235–250, January.

    Article  MathSciNet  MATH  Google Scholar 

  • Quan, A. (1974), A Note on High-Speed Generation of Maximal Length Sequences, IEEE Transactions on Computers, Vol. 23, pp. 201–203, February.

    Article  MATH  Google Scholar 

  • Reiner, I. (1961), On the Number of Matrices with Given Characteristic Polynomial, Illinois Journal of Mathematics, Vol. 5, pp. 324–329.

    MathSciNet  MATH  Google Scholar 

  • Roberts, P., A. Davies, and S. Tsao (1965), Discussion on Generation of Delayed Replicas of Maximal-Length Binary Sequences, Proceedings of the Institution of Electrical Engineers (London), Vol. 112, No. 4, pp. 702–704, April.

    Article  Google Scholar 

  • Rodemich, E. and H. Rumsey (1968), Primitive Trinomials of High Degree, Mathematics of Computation, Vol. 22, pp. 863–865.

    Article  MathSciNet  MATH  Google Scholar 

  • Scholefield, P. (1960), Shift Registers Generating Maximum-Length Sequences, Electronic Technology, Vol. 37, pp. 389–394, October.

    Google Scholar 

  • Sittler, R. (1956), Systems Analysis of Discrete Markov Processes, IRE Transactions on Circuit Theory, Vol. 3, pp. 257–266.

    Google Scholar 

  • Stahnke, W. (1973), Primitive Binary Polynomials, Mathematics of Computation, Vol. 27, No. 124, pp. 977–980, October.

    Article  MathSciNet  MATH  Google Scholar 

  • Swan, R. (1962), Factorization of Polynomials Over Finite Fields, Pacific Journal of Mathematics, Vol. 12, pp. 1099–1106.

    MathSciNet  MATH  Google Scholar 

  • Tausworthe, R. (1965), Random Numbers Generated by Linear Recurrence Modulo Two, Mathematics of Computation, Vol. 19, p. 201.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsao, S. (1964), Generation of Delayed Replicas of Maximal-Length Linear Binary Sequences, Proceedings of the Institution of Electrical Engineers (London), Vol. 111, No. 11, pp. 1803–1806, November.

    Article  Google Scholar 

  • VanLuyn, A. (1978), Shift-Register Connections for Delayed Versions of m-Sequences, Electronics Letters, Vol. 14, No. 22, pp. 713–715, October.

    Article  Google Scholar 

  • Warlick, W. and J. Hershey (1980), High-Speed m-Sequence Generators, IEEE Transactions on Computers, Vol. C-29, No. 5, pp. 398–400, May.

    Article  Google Scholar 

  • Watson, E. (1962), Primitive Polynomials (Mod 2), Mathematics of Computation, Vol. 16, No. 79, pp. 368–369, July.

    MathSciNet  MATH  Google Scholar 

  • Weathers, G. (1972), Statistical Properties of Filtered Pseudo-Random Digital Sequences, Sperry Rand Corporation, Technical Report No. SP-275-0599, January. (Prepared for NASA George C. Marshall Space Flight Center, Huntsville, AL. )

    Google Scholar 

  • Weinrichter, H. and F. Surböck (1976), Phase Normalized m-Sequences with the Inphase Decimation Property {m(k)} = {m(2k)}, Electronics Letters, Vol. 12, No. 22, pp. 590–591, October.

    Article  Google Scholar 

  • White, R. (1967), Experiments with Digital Computer Simulations of Pseudo-Random Noise Generators, IEEE Transactions on Electronic Computers, Vol. 16, pp. 355–357.

    Article  Google Scholar 

  • Yiu, K. (1980), A Simple Method for the Determination of Feedback, Shift Register Connections for Delayed Maximal-Length Sequences, Proceedings of the IEEE, Vol. 68, No. 4, pp. 537–538, April.

    Article  Google Scholar 

  • Zierler, N. (1959), Linear Recurring Sequences, Journal SIAM, Vol. 7, No. 1, pp. 31–48, March.

    MathSciNet  MATH  Google Scholar 

  • Zierler, N. and J. Brillhart (1968), On Primitive Trinomials (Mod 2), Information and Control, Vol. 13, pp. 541–554.

    Article  MathSciNet  MATH  Google Scholar 

  • Zierler, N. and J. Brillhart (1969), On Primitive Trinomials (Mod 2): II, Information and Control, Vol. 14, pp. 566–569.

    Article  MathSciNet  MATH  Google Scholar 

  • Zierler, N. (1969), Primitive Trinomials Whose Degree is a Mersenne Exponent, Information and Control, Vol. 15, pp. 67–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Zierler, N. (1970), On x n + x + 1 over GF(2), Information and Control, Vol. 16, pp. 502–505.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hershey, J.E., Rao Yarlagadda, R.K. (1986). Random and Pseudorandom Sequences. In: Data Transportation and Protection. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2195-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2195-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9290-6

  • Online ISBN: 978-1-4613-2195-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics