Skip to main content

Part of the book series: Applications of Communications Theory ((ACTH))

Abstract

Modern (substitution) cryptography depends on a very simple concept—modular addition of unpredictable, noiselike quantities to plaintext elements. What do we mean by this and, understanding it, how do we implement it? The following example is intended to motivate the question and lead us to the answer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brent, R. and J. Pollard (1981), Factorization of the Eighth Fermat Number, Mathematics of Computation, Vol. 35, pp. 627–630.

    Article  MathSciNet  Google Scholar 

  • DeLaurentis, J. (1984), A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem, Cryptologia, Vol. 8, pp. 253–259.

    Article  MathSciNet  Google Scholar 

  • Diffie,.W. and M. Hellman (1979), Privacy and Authentication: An Introduction to Cryptography, Proceedings of the IEEE, Vol. 67, pp. 397–427.

    Article  Google Scholar 

  • FIPS PUB 46 (1977), Data Encryption Standard, Federal Information Processing Standards, Publication Number 46, National Bureau of Standards.

    Google Scholar 

  • FIPS PUB 81 (1980), DES Modes of Operation, Federal Information Processing Standards, Publication Number 81, National Bureau of Standards.

    Google Scholar 

  • Floyd, D. (1982), A Survey of the Current State of the Art in Conventional and Public Key Cryptography, Tech. Rpt. 81–10, Dept. Computer Science, University of Pittsburgh.

    Google Scholar 

  • Henze, E. (1982), The Solution of the General Equation for Public Key Distribution Systems, IEEE Transactions on Information Theory, Vol. 28, p. 933.

    Article  Google Scholar 

  • Hellman, M., R. Merkle, R. Schroeppel, L. Washington, W. Diffie, S. Pohlig, and P. Schweitzer (1976), Results of an Initial Attempt to Cryptanalyze the NBS Data Encryption Standard, SEL76-042, Stanford University.

    Google Scholar 

  • Hershey, J. (1983), The Data Encryption Standard, Telecommunications, Vol. 17, Sept., pp. 77 ff.

    Google Scholar 

  • Karnin, E., J. Greene, and M. Hellman (1983), On Secret Sharing Systems, IEEE Transactions on Information Theory, Vol. 29, pp. 35–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Knuth, D. (1973), The Art of Computer Programming, Vol. 1, 2nd ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • Merkle, R. (1978), Secure Communications Over Insecure Channels, Communications of the ACM,Vol. 21, pp. 294–299.

    Article  Google Scholar 

  • Morrison, M. and J. Brillhart (1975), A Method of Factoring and the Factorization of F 7 , Mathematics of Computation, Vol. 29, pp. 183–205.

    MathSciNet  MATH  Google Scholar 

  • Pomper, W. (1982), The DES Modes of Operation and Their Synchronization, Proceedings of the International Telemetering Conference, pp. 837–851.

    Google Scholar 

  • Pohlig, S. (1978), An Improved Algorithm for Computing Logarithms Over GF(p) and Its Cryptographic Significance, IEEE Transactions on Information Theory, Vol. 24, pp. 106–110.

    Google Scholar 

  • Pohlig, S. (1979), An Overview of Secure Communications Using the Discrete Exponential,EASCON Proceedings, pp. 650–652.

    Google Scholar 

  • Rivest, R., A. Shamir, and L. Adleman (1978), A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, Vol. 21, pp. 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Seshu, S. and M. Reed (1961), Linear Graphs and Electrical Networks, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Simmons, G. (1983), A “Weak” Privacy Protocol Using the RSA Cryptoalgorithm, Cryptologia, Vol. 7, pp. 180–182.

    Article  MATH  Google Scholar 

  • Simmons, G. and D. Holdridge (1982), Forward Search as a Cryptanalytic Tool Against a Public Key Privacy Channel, Proceedings of the Symposium on Security and Privacy, pp. 117–128.

    Google Scholar 

  • Stillman, R. and C. DeFiore (1980), Computer Security and Networking Protocols: Technical Uses in Military Data Communications Networks, Transactions on Communications, Vol. 28, pp. 1472–1477.

    Article  Google Scholar 

  • Williams, H. (1984), An Overview of Factoring, in Advances in Cryptology, Proceedings of Crypto 83, Plenum Press, New York, pp. 71–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hershey, J.E., Rao Yarlagadda, R.K. (1986). Information Protection. In: Data Transportation and Protection. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2195-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2195-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9290-6

  • Online ISBN: 978-1-4613-2195-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics