Skip to main content

Perinatal Hypoxia

Implications for Mammalian Development

  • Chapter
Handbook of Behavioral Teratology

Abstract

The literature contains many studies of the effects of acute hypoxia, anoxia, and asphyxia, as induced by a variety of techniques, on measures of the cardiovascular, pulmonary, and nervous systems. These studies have provided an important information base for healthcare professionals in instances of cardiorespiratory pathology, acute toxic exposure, or other acute life-threatening situations. However, the literature dealing with responses of the immature organism to hypoxic conditions is much less complete. One explanation for this relative paucity of data on the developing organism is that, classically, the immature organism has been regarded as relatively insensitive to hypoxia. This view stems largely from experiments such as those of Adolph (1969), which show an inverse relationship between age and survival following asphyxiation (Figure 1). Similar results showing an inverse relationship between age and survival of anoxia have been obtained in various mammalian species (Fazekas, Alexander, & Himwich, 1941). Such data led to the early belief that the immature organism relies predominantly on anaerobic metabolism, but they are probably more accurately interpreted as reflecting the lower brain-oxygen consumption of the fetus and the newborn than of the adult (Himwich, Baker, & Fazakas, 1939). As we unfortunately know from clinical experience and from a variety of experiments with animal subjects, the immature organism, under certain conditions, will survive hypoxia, but the central nervous system shows profound injury. Survival is clearly an inexact measure of resistance to injury. Still to be determined are the boundary conditions under which the immature brain first suffers hypoxic injury and the brain regions and the developmental processes that are most vulnerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbatiello, E. R., & Mohrmann, K. Effects on the offspring of chronic low exposure carbon monoxide during mice pregnancy. Clinical Toxicology, 1979, 14, 401–406.

    Article  PubMed  Google Scholar 

  • Adolph, E. F. Regulations during survival without oxygen in infant mammals. Respiratory Physiology, 1969, 7, 356–368.

    Article  Google Scholar 

  • Ashwal, S., Majcher, J. S., & Longo, L. D. Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia: Studies during the posthypoxic recovery period. American Journal of Obstetrics and Gynecology, 1981, 139, 365–372.

    PubMed  Google Scholar 

  • Astrup, P., Trolle, D., Olsen, H. M., & Kjeldsen, K. Effects of moderate carbon-monoxide exposure on fetal development. Lancet, 1972, 2, 1220–1222.

    Article  PubMed  Google Scholar 

  • Astrup, P., Trolle, D., Olsen, H. M., & Kjeldsen, K. Moderate hypoxia exposure and fetal development. Archives of Environmental Health, 1975, 30, 15–16.

    PubMed  Google Scholar 

  • Bailey, C. J., & Windle, W. F. Neurological, psychological and neurohistological defects following asphyxia neonatorum in the guinea pig. Experimental Neurology, 1959, 1, 467–482.

    Article  Google Scholar 

  • Bauer, R. H. Ontogeny of two-way avoidance in male and female rats. Developmental Psychobiology, 1978, 11, 103–116.

    Article  PubMed  Google Scholar 

  • Becker, R. F., & Donnell, W. Learning behavior in guinea pigs subjected to asphyxia at birth. Journal of Comparative and Physiological Psychology, 1952, 45, 153–162.

    Article  PubMed  Google Scholar 

  • Behrman, R. E., Lees, M. H., Peterson, E. N., de Lannoy, C. W., & Seeds, A. E. Distribution of the circulation in the normal and asphyxiated fetal primate. American Journal Obstetrics and Gynecology, 1970, 108, 956–969.

    Google Scholar 

  • Bornschein, R. L., Hastings, L., & Manson, J. M. Behavioral toxicity in the offspring of rats following maternal exposure to dichloromethane. Toxicology and Applied Pharmacology, 1980, 52, 29–37.

    Article  PubMed  Google Scholar 

  • Bunch, M. E. The effects of pre- and postnatal anoxia upon learning and memory at maturity. Science, 1952, 116, 517–518.

    Google Scholar 

  • Choi, K. D., & Oh, Y. K. A teratological study on the effects of carbon monoxide exposure upon the fetal development of albino rats. Korean Central Journal of Medicine, 1975, 29, 209–212.

    Google Scholar 

  • Coyle, J. T. Development of the central catecholaminergic neurons in the rat. In E. Usdin & S. H. Snyder (Eds.), Frontiers in catecholamine research. New York: Pergamon Press, 1973.

    Google Scholar 

  • Culver, B., & Norton, S. Juvenile hyperactivity in rats after acute exposure to carbon monoxide. Experimental Neurology, 1976, 50, 80–98.

    Article  PubMed  Google Scholar 

  • Curley, F. J., & Ingalls, T. H. Hypoxia at normal atmospheric pressure as a cause of congenital malformations in mice. Proceedings of the Society for Experimental Biology and Medicine, 1957, 94, 87–88.

    PubMed  Google Scholar 

  • Darke, R. A. Late effects of severe asphyxia neonatorum. Journal of Pediatrics, 1944, 24, 148–158.

    Article  Google Scholar 

  • Daughtrey, W. C., & Norton, S. Caudate morphology and behavior of rats exposed to carbon monoxide in utero. Experimental Neurology, 1983, 80, 265–278.

    Article  PubMed  Google Scholar 

  • Degenhardt, K. H., & Knoche, E. Analysis of intrauterine malformations of the vertebral column induced by oxygen deficiency. Canadian Medical Association Journal, 1959, 80, 441–445.

    PubMed  Google Scholar 

  • Dobbing, J. Undernutrition and the developing brain. In W. A. Himwich (Ed.), Developmental neurobiology. Springfield, IL: Thomas, 1970.

    Google Scholar 

  • Faro, M. D., & Windle, W. F. Transneuronal degeneration in brains of monkeys asphyxiated at birth. Experimental Neurology, 1969, 24, 38–53.

    Article  PubMed  Google Scholar 

  • Fazekas, J. F., Alexander, F. A. D., & Himwich, H. E. Tolerance of the newborn to anoxia. American Journal of Physiology, 1941, 134, 281–287.

    Google Scholar 

  • Fechter, L. D., & Annau, Z. Effects of prenatal carbon monoxide exposure on neonatal rats. In M. Horvath (Ed.), Adverse effects of environmental chemicals and psychotropic drugs: Neurophysiological and behavioral tests, Vol 2. Amsterdam: Elsevier Scientific, 1976.

    Google Scholar 

  • Fechter, L. D., & Annau, Z. Toxicity of mild prenatal carbon monoxide exposure. Science, 1977, 197, 680–682.

    Article  PubMed  Google Scholar 

  • Fechter, L. D., & Annau, Z. Prenatal carbon monoxide exposure alters behavioral development. Neurobehavioral Toxicology, 1980, 2, 7–11.

    PubMed  Google Scholar 

  • Fechter, L. D., Thakur, M., Miller, B., Annau, Z., & Srivastava, U. Effects of prenatal carbon monoxide exposure on cardiac development. Toxicology and Applied Pharmacology, 1980, 56, 370–375.

    Article  PubMed  Google Scholar 

  • Feigley, D. A., & Spear, N. E. Effect of age and punishment condition on long-term retention by the rat of active- and passive-avoidance learning. Journal of Comparative and Physiological Psychology, 1970, 73, 515–526.

    Article  PubMed  Google Scholar 

  • File, S. E., & Wardhill, A. G. Validity of head-dipping as a measure of exploration in a modified hole board. Psychopharmacologia, 1975, 44, 53–59.

    Article  PubMed  Google Scholar 

  • Garvey, D. J., & Longo, L. D. Chronic low level maternal carbon monoxide and fetal growth and development. Biology of Reproduction, 1978, 19, 8–14.

    Article  PubMed  Google Scholar 

  • Ginsberg, M. D., & Myers, R. E. Fetal brain damage following maternal carbon monoxide intoxication: An experimental study. Acta Obstetricia et Gynecologicia Scandinavica, 1974, 53, 309–317.

    Article  Google Scholar 

  • Graessle, C. A. Prenatal influence of mild decompressions on hooded rats. Developmental Psychobiology, 1980, 13, 399–407.

    Article  PubMed  Google Scholar 

  • Graessle, C. A., Ahbel, K., & Porges, S. W. Effects of mild prenatal decompressions on growth and behavior in the rat. Bulletin of the Psychonomic Society, 1978, 12, 329–331.

    Google Scholar 

  • Hardin, B. D., & Manson, J. M. Absence of dichloromethane teratogenicity with inhalation exposure in rats. Toxicology and Applied Pharmacology, 1980, 52, 22–28.

    Article  PubMed  Google Scholar 

  • Harned, H. S., Jr. Respiration and the respiratory system. In U. Stave (Ed.), Perinatal physiology, New York: Plenum Press, 1978.

    Google Scholar 

  • Hershkowitz, M., Grimm, V. E., & Speiser, Z. The effects of postnatal anoxia on behavior and on the muscarinic and beta-adrenergic receptors in the hippocampus of the developing rat. Developmental Brain Research, 1983, 7, 147–155.

    Article  Google Scholar 

  • Hill, E. P., Power, G. G., & Longo, L. D. A mathematical model of placental 02 transfer with consideration of hemoglobin reaction rates. American Journal of Physiology, 1972, 222, 721–729.

    PubMed  Google Scholar 

  • Hill, E. P., Power, G. G., & Longo, L. D. A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen. American Journal of Physiology, 1973, 224, 283–299.

    PubMed  Google Scholar 

  • Himwich, H. E., Baker, Z., & Fazekas, J. F. The respiratory metabolism of infant brain. American Journal of Physiology, 1939, 125, 601–606.

    Google Scholar 

  • Hurder, W. P., & Sanders, A. F. The effects of neonatal anoxia on the maze performance of adult rats. Journal of Comparative and Physiological Psychology, 1953, 46, 61–63.

    Article  PubMed  Google Scholar 

  • Hyman, A., Parker, B., Berman, D., & Berman, A. J. Delayed response deficits in neonatally asphyxiated Rhesus monkeys. Experimental Neurology, 1970, 28, 420–425.

    Article  PubMed  Google Scholar 

  • Hyman, A., Berman, D., & Berman, A. J. Deficits in unsignaled avoidance behavior in Rhesus monkeys asphyxiated at birth. Experimental Neurology, 1971, 30, 362–366.

    Article  PubMed  Google Scholar 

  • Ingalls, T. H., Curley, F. J., & Prindle, R. A. Anoxia as a cause of fetal death and congenital defect in the mouse. American Journal of the Diseases of Children, 1950, 80, 34–45.

    Google Scholar 

  • Ingalls, T. H., Curley, F. J., & Prindle, R. A. Experimental production of congenital abnormalities: Timing and degree of anoxia as factors causing deaths and congenital abnormalities in the mouse. New England Journal of Medicine, 1952, 247, 758–768.

    Article  PubMed  Google Scholar 

  • Kalter, H., & Warkany, J. Experimental production of congenital malformations in mammals by metabolic procedure. Physiological Reviews, 1959, 39, 69–115.

    PubMed  Google Scholar 

  • Kellogg, C., & Lundborg, P. Ontogenic variations in responses to /-DOPA and monoamine receptor-stimulating agents. Psychopharmacologia, 1972, 23, 187–200.

    Article  PubMed  Google Scholar 

  • Kimble, G. Hilgard and Marquis’ conditioning and learning ( 2nd ed. ). New York: Appleton-Century-Crofts, 1961.

    Google Scholar 

  • King, F. A. Effects of septal and amygdaloid lesions on emotional behavior and conditioned avoidance responses in the rat. Journal of Nervous and Mental Diseases, 1958, 126, 57–63.

    Article  Google Scholar 

  • Longo, L. D. Carbon monoxide in the pregnant mother and fetus and its exchange across the placenta. Annals of the New York Academy of Sciences, 1970, 174, 313–341.

    Article  Google Scholar 

  • Longo, L. D. The biological effect of carbon monoxide on the pregnant woman, fetus, and newborn infant. American Journal of Obstetrics and Gynecology, 1977, 129, 69–103.

    PubMed  Google Scholar 

  • Longo, L. D., & Hill, E. P. Carbon monoxide uptake and elimination in fetal and maternal sheep. American Journal of Physiology, 1977, 232, H324–H330.

    PubMed  Google Scholar 

  • Longo, L. D., Hill, E. P., & Power, G. G. Theoretical analysis of factors affecting placental 02 transfer. American Journal of Physiology, 1972, 222, 730–739.

    PubMed  Google Scholar 

  • Mactutus, C. F., & Fechter, L. D. Prenatal exposure to carbon monoxide: Learning and memory deficits. Science, 1984, 223, 409–411.

    Article  PubMed  Google Scholar 

  • Mactutus, C. F., & Fechter, L. D. Moderate carbon monoxide exposure produces persistent, and apparently permanent, memory deficits in rats. Teratology, 1985, 31, 1–12.

    Article  PubMed  Google Scholar 

  • McCullough, M. L., & Blackman, D. E. The behavioral effects of prenatal hypoxia in the rat. Developmental Psychobiology, 1976, 9, 335–342.

    Article  PubMed  Google Scholar 

  • Meier, G. W. Hypoxia. In E. Furchtgott (Ed.), Pharmacological and biophysical agents and behavior. New York: Academic Press, 1971.

    Google Scholar 

  • Meier, G. W., & Bunch, M. E. The effects of natal anoxia upon learning and memory at maturity. Journal of Comparative and Physiological Psychology, 1950, 43, 436–441.

    Article  PubMed  Google Scholar 

  • Meier, G. W., Bunch, M. E., Nolan, C. Y., & Scheidler, C. H. Anoxia, behavioral development, and learning ability: A comparative-experimental approach. Psychological Monographs, 1960, 74, 1–48. (Whole No. 488).

    Google Scholar 

  • Metcalf, J., Bartels, H., & Moll, W. Gas exchange in the pregnant uterus. Physiological Reviews, 1967, 47, 782–838.

    Google Scholar 

  • Murakami, U., & Kameyama, Y. Vertebral malformations in the mouse foetus caused by maternal hypoxia during early stages of pregnancy. Journal of Embryology and Experimental Morphology, 1963, 11, 107–118.

    Google Scholar 

  • Myers, R. E. A unitary theory of casuation of anoxic and hypoxic brain pathology. In S. Fahn, J. N. Davis, & L. P. Roland (Eds.), Advances in neurology, Vol. 26. New York: Raven Press, 1979.

    Google Scholar 

  • Norton, S., & Culver, B. A Golgi analysis of caudate neurons in rats exposed to carbon monoxide. Brain Research, 1977, 132, 455–465.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. The hippocampus as a cognitive map. London: Oxford University Press, 1978.

    Google Scholar 

  • Pokorny, J., & Trojan, S. Chronic changes in the receptive field of the pyramidal cells of the rat hippocampus after intermittent postnatal hypoxia. Physiologia Bohemoslovaca, 1983, 32, 393–402.

    PubMed  Google Scholar 

  • Power, G. G., & Longo, L. D. Fetal circulation times and their implications for tissue oxygenation. Gynecological Investigation, 1975, 6, 342–355.

    Article  Google Scholar 

  • Ranck, J. B., Jr., & Windle, W. F. Brain damage in the monkey, Macaca mulatta by asphyxia neonatorum. Experimental Neurology, 1959, 1, 130–154.

    Article  PubMed  Google Scholar 

  • Reiter, L. W., & MacPhail, R. C. Motor activity: A survey of methods with potential use in toxicity testing. Neurobehavioral Toxicology, 1979, 1, 53–66. (Supplement 1).

    PubMed  Google Scholar 

  • Riccio, D. C., Rohrbaugh, M., & Hodges, L. A. Developmental aspects of passive and active avoidance learning in rats. Developmental Psychobiology, 1968, 1, 108–111.

    Article  Google Scholar 

  • Robertson, G. G. Embryonic development following maternal hypoxia in the rat. Anatomical Record, 1959, 133, 420–421.

    Google Scholar 

  • Rodier, P. M. Chronology of neuron development: Animal studies and their clinical implications. Developmental Medicine and Child Neurology, 1980, 22, 525–545.

    Article  PubMed  Google Scholar 

  • Saxon, S. V. Effects of asphyxia neonatorum on behavior in the Rhesus monkey. Journal of Genetic Psychology, 1961, 99, 277–282. (a)

    PubMed  Google Scholar 

  • Saxon, S. V. Differences in reactivity between asphyxial and normal Rhesus monkeys. Journal of Genetic Psychology, 1961, 99, 283–287. (b)

    PubMed  Google Scholar 

  • Saxon, S. V., & Ponce, C. G. Behavioral defects in monkeys asphyxiated during birth. Experimental Neurology, 1961, 4, 460–469.

    Article  PubMed  Google Scholar 

  • Scheidler, C. The effects of prenatal anoxia on learning of white rats. Unpublished doctoral dissertation, Washington University, St. Louis, 1953. (Reproduced in G. W. Meier et al, article appearing in Psychological Monographs, 1960, 74.)

    Google Scholar 

  • Schwetz, B. A., Smith, F. A., Leong, B. K. J., & Staples, R. E. Teratogenic potential of inhaled carbon monoxide in mice and rabbits. Teratology, 1979, 19, 385–392.

    Article  PubMed  Google Scholar 

  • Sechzer, J. A. Behavioral responses of Rhesus monkeys seven years after neonatal asphyxia. Anatomical Record, 1968, 160, 425–426.

    Google Scholar 

  • Sechzer, J. A. Memory deficit in monkeys brain damaged by asphyxia neonatorum. Experimental Neurology, 1969, 24, 497–507.

    Article  PubMed  Google Scholar 

  • Sechzer, J. A., Faro, M. D., Barker, J. N., Barsky, D., Gutierrez, S., & Windle, W. F. Developmental behaviors: Delayed appearance in monkeys asphyxiated at birth. Science, 1971, 171, 1173–1175.

    Article  PubMed  Google Scholar 

  • Shellenberger, K. M., & Norton, S. Factors influencing the persistent effects of carbon monoxide exposure on rat motor activity. Neurotoxicology, 1980, 1, 541–550.

    Google Scholar 

  • Simon, N., & Volicer, L. Neonatal asphyxia in the rat: Greater vulnerability of males and persistent effects on brain monoamine synthesis. Journal of Neurochemistry, 1976, 26, 893–900.

    Article  PubMed  Google Scholar 

  • Speiser, Z., Korczyn, A. D., Teplitzky, I., & Gitter, S. Hyperactivity in rats following postnatal anoxia. Behavioral Brain Research, 1983, 7, 379–382.

    Article  Google Scholar 

  • Tapp, J. T., Zimmerman, R. S., & D’Encarnacao, P. S. Intercorrelational analysis of some common measures of rat activity. Psychological Reports, 1968, 23, 1047–1050.

    Article  Google Scholar 

  • Tolman, E. C. Principles of performance. Psychological Review, 1955, 62, 315–326.

    Article  PubMed  Google Scholar 

  • Tominaga, T., & Page, E. W. Accommodation of the human placenta to hypoxia. American Journal of Obstetrics and Gynecology, 1966, 94, 679–691.

    PubMed  Google Scholar 

  • Towbin, A. Cerebral hypoxic damage in fetus and newborn: Basic patterns and clinical significance. Archives of Neurology, 1969, 20, 35–43.

    PubMed  Google Scholar 

  • Towbin, A. Organic causes of minimal brain dysfunction. Journal of the American Medical Association, 1971, 217, 1207–1214.

    Article  PubMed  Google Scholar 

  • Vierck, C. J., Jr., & Meier, G. W. Effects of prenatal hypoxia upon locomotor activity of the mouse. Experimental Neurology, 1963, 7, 418–425.

    Article  PubMed  Google Scholar 

  • Vierck, C. J., Jr., King, F. A., & Ferm, V. H. Effects of prenatal hypoxia upon activity and emotionality of the rat. Psychonomic Science, 1966, 4, 87–88.

    Google Scholar 

  • Weasner, M. H., Finger, F. W., & Reid, L. S. Activity changes under food deprivation as a function of recording device. Journal of Comparative and Physiological Psychology, 1960, 53, 470–474.

    Article  PubMed  Google Scholar 

  • Wells, L. L. The prenatal effect of carbon monoxide on albino rats and the resulting neuropathology. Biologist, 1933, 15, 80–81.

    Google Scholar 

  • Williams, I. R., & Smith, E. Blood picture, reproduction and general condition during daily exposure to illuminating gas. American Journal of Physiology, 1935, 110, 611–615.

    Google Scholar 

  • Windle, W. F. Brain damage at birth. Journal of the American Medical Association, 1968, 206, 1967–1972.

    Article  PubMed  Google Scholar 

  • Windle, W. F., & Becker, R. F. Effects of anoxia at birth on central nervous system of the guinea pig. Proceedings of the Society for Experimental Biology and Medicine, 1942, 51, 213–215.

    Google Scholar 

  • Windle, W. F., & Becker, R. F. Asphyxia neonatorum. An experimental study in the guinea pig. American Journal of Obstetrics and Gynecology, 1943, 45, 183–200.

    Google Scholar 

  • Windle, W. F., Becker, R. F., & Weil, A. Alterations in brain structure after asphyxiation at birth: An experimental study in the guinea pig. Journal of Neuropathology and Experimental Neurology, 1944, 3, 224–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mactutus, C.F., Fechter, L.D. (1986). Perinatal Hypoxia. In: Riley, E.P., Vorhees, C.V. (eds) Handbook of Behavioral Teratology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2189-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2189-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9288-3

  • Online ISBN: 978-1-4613-2189-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics