Viruses, Cancer and Immunity

  • Ronald B. Herberman
Part of the University of South Florida International Biomedical Symposia Series book series (USFIBSS)

Abstract

The main theme of this book is on the interactions of viruses with the immune system. As a tumor immunologist, I would like to address this chapter to the many analogies between interactions of the immune system with viruses on the one hand and cancer on the other. As a framework for specific discussion of such interactions, two main questions might be identified: (i) What effects do cancer and viruses have on the immune system? and (ii) What effects does the immune system have on cancer and on virus infections? There is abundant information about the reciprocal nature of these interactions. The presence of tumors or viruses in the host can have profound effects on the immune system and, conversely, the immune system can play a key role in defense against cancer and virus infections.

Keywords

Hepatitis Depression Lymphoma Leukemia Influenza 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Hewitt, Animal tumor models and their relevance to human tumor immunology J. Biol. Resp. Modif. 1: 107 (1982).Google Scholar
  2. 2.
    R. B. Herberman, Counterpoint: Animal tumor models and their relevance to human tumor immunology, J. Biol. Resp. Modif. 2: 39 (1983).Google Scholar
  3. 3.
    H. B. Hewitt, Second Point: Animal tumor models and their relevance to human tumor immunology, J. Biol. Resp. Modif. 2: 210 (1983).Google Scholar
  4. 4.
    R. B. Herberman, Second counterpoint: Animal tumor models and their relevance to human tumor immunology, J. Biol. Resp. Modif. 2 (3): 217 (1983).Google Scholar
  5. 5.
    C. P. Doherty, R. V. Blanden and R. M. Zinkernagel, Specificity of virus-immune effector T cell for H-2K or H-2D compatible interactions: implications for H-antigen diversity, Transpl. Rev. 29: 89 (1976).Google Scholar
  6. 6.
    H. T. Holden and R. B. Herberman, Cytotoxicity against tumor-associated antigens not H-2 restricted, Nature, 268: 250 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    R. B. Herberman, M. E. Nunn, H. T. Holden, S. Staal and J. Y. Djeu, Augmentation of natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogenic target cells, Int. J. Cancer, 19: 555 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Y. Djeu, K.-Y. Huang and R. B. Herberman, Augmentation of mouse natural killer activity and induction of interferon by tumor cells in vivo, J. Exp. Med. 151: 781 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Y. Djeu, N. Stocks, K. Zoon, G. J. Stanton, T. Timonen and R. B. Herberman, Positive self regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes viruses, J. Exp. Med. 156: 1222 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Y. Djeu, T. Timonen and R. B. Herberman, Production of interferon by human natural killer cells in response to mitogens, viruses and bacteria, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York, (1982).Google Scholar
  11. 11.
    T. Kasahara, J. Y. Djeu, S. F. Dougherty and J. J. Oppenheim, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: interleukin 2, interferon and colony stimulating factor, J. Immunol. 131: 2379 (1983).PubMedGoogle Scholar
  12. 12.
    W. Domzig and B. M. Stadler, The relation between human natural killer cells and interleukin 2, in: “NK Cells and Other Natural Effector Cells”, R. B. Herberman, ed., Academic Press, New York (1982).Google Scholar
  13. 13.
    G. Scala, P. Allavena, J. Y. Djeu, T. Kasahara, J. R. Ortaldo, R. B. Herberman and J. J. Oppenheim, Human large granular lymphocytes are potent producers of interleukin-1, Nature, 309: 56 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R. B. Herberman, P. Allavena, G. Scala, J. Djeu, T. Kasahara, W. Domiz, A. Procopio, I. Blanca, J. Ortaldo and J. J. Oppenheim, Cytokine production by human large granular lymphocytes (LGL), in: “Natural Killer Activity and Its Regulation,” T. Hoshino, H. S. Koren and A. Uchida, eds., Excerpta Medica Ltd. Tokyo (1984).Google Scholar
  15. 15.
    S. Fujimoto, M. I. Greene and A. H. Sehon, Regulation of the immune response to tumor antigens. I. Immunosuppressor cells in tumor-bearing hosts, J. Immunol. 116: 791 (1976).PubMedGoogle Scholar
  16. 16.
    M. L. Kripke and M. S. Fisher, Immunologic parameters of ultraviolet carcinogensis, J. Natl. Cancer Inst. 57: 211 (1976).PubMedGoogle Scholar
  17. 17.
    H. Kirchner, M. Glaser, H. T. Holden, B. R. Fernbach and R. B. Herberman, Suppressor cells in tumor-bearing mice and rats, Biomedicine 24: 371 (1976).PubMedGoogle Scholar
  18. 18.
    S. Broder, L. Muul and T. A. Waldmann, Suppressor cells in neoplastic disease, J. Natl. Cancer Inst. 61: 5 (1978).PubMedGoogle Scholar
  19. 19.
    H. Kirchner, T. M. Chused, R. B. Herberman, H. T. Herberman and D. H. Larvin, Evidence of suppressor cell activity in spleens of mice bearing primary tumors induced by Moloney sarcoma virus, J. Exp. Med. 139: 1473 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    M. J. Brunda, R. B. Herberman and H. T. Holden, Inhibition of murine natural killer cell activity by prostaglandins, J. Immunol. 124: 2682 (1980).PubMedGoogle Scholar
  21. 21.
    P. Ehrlich, Uber den jetzigen Stand der Karcinomaforschung, in: “The Collected Papers of Paul Ehrlich,” Vol. II, F. Himmelweit, ed., Permagon Press, London (1957).Google Scholar
  22. 22.
    F. M. Burnet, Cancer—a biological approach, Brit. Med. J 1: 779 841 (1957).PubMedCrossRefGoogle Scholar
  23. 23.
    F. M. Burnet, The concept of immunological surveillance, Prog. Exp. Tumor Res. 13: 1 (1970).PubMedGoogle Scholar
  24. 24.
    R. B. Herberman, Immune surveillance hypothesis:updated formulation and possible effector mechanisms, in: “Progress in Immunology V, ” Y. Yamamura and T. Tade, eds., Academic Press, Tokyo (1983).Google Scholar
  25. 25.
    D. O. Adams and R. Snyderman, Do macrophages destroy nascent tumors? J. Natl. Cancer Inst. 62: 1341 (1979).PubMedGoogle Scholar
  26. 26.
    J. B. Hibbs, Jr., H. A. Chapman, Jr. and J. B. Weinberg, The macrophage as an antineoplastic surveillance cell: biological perspectives, Reticuleondothel. 24: 549 (1978).Google Scholar
  27. 27.
    R. Evans, Macrophages in syngeneic animal tumors, Transplantation 14: 468 (1972).PubMedCrossRefGoogle Scholar
  28. 28.
    C. L. Gauci and P. Alexander, The macrophage content of some human tumors, Cancer Lett. 1: 20 (1975).Google Scholar
  29. 29.
    K. C. Norbury and M. L. Kripke, Ultraviolet-induced carcinogenesis in mice treated with silica, trypan blue or pyran copolymer, J. Reticuloendothel. Soc. 26: 826 (1979).Google Scholar
  30. 30.
    G. Cudkowicz and P. S. Hochman, Do natural killer cells engage in regulated reactions against self to ensure homeostasis? Immunol. Rev. 44: 13 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    R. B. Herberman and W. T. Holden, Natural cell-mediated immunity, Adv. Cancer Res. 27: 305 (1978).Google Scholar
  32. 32.
    J. M. Ward, F. Argilan and C. W. Reynolds, Immunoperoxidase localization of large granular lymphocytes in normal tissues and lesions of athymic nude rats, J. Immunol. 131: 132 (1983).PubMedGoogle Scholar
  33. 33.
    J. M. Gerson, Systemic and in situ natural killer activity in tumor- bearing mice and patients with cancer, in: “Natural Cell-Mediated Immunity Against Tumors,” R. B. Herberman, ed.,New York (1980).Google Scholar
  34. 34.
    S. A. Serrate and R. B. Herberman, Natural cell-mediated cytotoxicity against spontaneous mouse mammary tumors, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press New York (1982).Google Scholar
  35. 35.
    S. A. Serrate, B. M. Vose, T. Timonen, J. R. Ortaldo and R. B. Herberman, Association of human natural killer cell activity against human primary tumors with large granular lymphocytes, in: “NK Cell and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York (1982).Google Scholar
  36. 36.
    J. F. Loutit, K. M. S. Townsend and J. F. Knowles, Tumor surveillance in beige mice, Nature 285: 66 (1980).CrossRefGoogle Scholar
  37. 37.
    P. B. Dent, L. A. Fish, J. F. White and R. A. Good, Chediak Higashi syndrome. Observations on the nature of the associated malignancy, Lab. Invest. 15: 1634 (1966).PubMedGoogle Scholar
  38. 38.
    M. Lipinski, T. Tursz, H. Kreis, Y. Finale and J. L. Amiel, Dissociation of natural killer cell activity and antibody-dependent cell- mediated cytotoxicity in kidney allograft recipients receiving high- dose immunosuppressive therapy, Transplantation 29: 214 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    E. Gorelik and R. B. Herberman, Inhibition of the activity of mouse NK cells by urethane, Natl. Cancer Inst. 66: 543 (1981).Google Scholar
  40. 40.
    D. R. Parkinson, R. P. Brightman and S. D. Waksal, Altered natural killer cell biology in C57BL/6 mice after leukomogenic split-dose irradiation, Immunol. 126: 1460 (1981).Google Scholar
  41. 41.
    R. Ehrlich, M. Efrati and I. P. Witz, Cytotoxicity and cytostasis mediated by splenocytes of mice subjected to chemical carcinogens and of mice bearing tumors, in: “Natural Cell-Mediated Immunity Against Tumors,” R. B. Herberman, ed., Academic Press, New York (1980).Google Scholar
  42. 42.
    C. Riccardi, P. Puccetti, A. Santoni and R. B. Herberman, Rapid in vivo assay of mouse NK cell activity, J. Natl. Cancer Inst. 63: 1041 (1979).PubMedGoogle Scholar
  43. 43.
    E. Gorelik, M. Fogel, M. Feldman and S. Segals, Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells, J. Natl. Cancer Inst. 63: 1397 (1979).PubMedGoogle Scholar
  44. 44.
    N. Hanna and I. Fidler, Relationship between metastic potential and resistance to natural killer cell-mediated cytotoxicity in three murine tumor systems, J. Natl. Cancer Inst. 66: 1183 (1981).Google Scholar
  45. 45.
    E. Gorelik, B. Rosen and R. B. Herberman, Depression of NK reactivity in mice by leukemogenic doses of irradiation, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York (1980).Google Scholar
  46. 46.
    E. Gorelik, R. H. Wiltrout, K. Okumura, S. Kabu and R. B. Herberman, Role of NK cells in the control of metastatic spread and growth of tumor cells in mice, Int. Cancer 30: 107 (1982).CrossRefGoogle Scholar
  47. 47.
    T. Barlozzari, C. W. Reynold and R. B. Herberman, Reconstitution of NK activity and antitumor immunity in anti-asialo GM -treated rats by the adoptive transfer of LGL, in: “Natural Killer Activity and Its Regulation,” T. Hoshino, H. S. Koren and A. Uchida, eds., Excerpta Medica Ltd. Tokyo (1984).Google Scholar
  48. 48.
    J. F. Warner and G. Dennert, In vivo function of a cloned cell line with NK activity: Effects on bone marrow transplants, tumor development and metastasis, Nature 300:31 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    E. Gorelik and R. B. Herberman, Susceptibiltiy of various strains of mice to urethane-induced lung tumors and depressed natural killer cell activity, J. Natl. Cancer Inst. 67: 1317 (1981).PubMedGoogle Scholar
  50. 50.
    E. Gorelik and R. B. Herberman, Role of natural cell-mediated immunity in urethane-induced lung carcinogenesis, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press New York (1982).Google Scholar
  51. 51.
    W. Heston and T. Dunn, Tumor development in susceptible strain A and resistant L lung transplants in LAFI host, J. Natl. Cancer Inst. 11: 1057 (1951).PubMedGoogle Scholar
  52. 52.
    E. Gorelik, B. Rosen, D. Copland, B. Weatherly and R. B. Herberman, Evaluation of role of natural killer cells in radiation-induced leukemogenesis in mice, Natl. Cancer Inst. 72: 1397 (1984).Google Scholar
  53. 53.
    G. R. Shellam, J. E. Grundy and J. E. Allan, The role of natural killer cells and interferon to resistance to murine cytomegalovirus, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York (1982).Google Scholar
  54. 54.
    C. Lopez, D. Kirkpatrick and P. Fitzgerald, The role of NK (HSV-1) effector cells in resistance to herpes virus infection in man, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York (1982).Google Scholar
  55. 55.
    J. F. Bukowski, B. A. Woda, S. Habu, K. Okumura and R. M. Welsh, Natural Killer cell depletion enhances virus synthesis and virus- induced hepatitis in vivo, J. Immunol. 131: 1531 (1983).PubMedGoogle Scholar
  56. 56.
    J. Y. Djeu, T. Timonen and R. B. Herberman, Production of interferon by human natural killer cells in response to migotens, viruses and bacteria, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Adacemic Press, New York (1982).Google Scholar
  57. 57.
    W. Domzig and B. M. Stadler, The relation between human natural killer cells and interleukin 2, in: “NK Cells and Other Natural Effector Cells,” R. B. Herberman, ed., Academic Press, New York (1982).Google Scholar
  58. 58.
    G. Scala, P. Allavena, J. Y. Djeu, T. Kasahara, J. R. Ortaldo, R. B. Herberman and J. J. Oppenheim, Human large granular lymphocytes are potent producers of interleukin-1, Nature, 309: 56 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    R. B. Herberman, P. Allavena, G. Scala, J. Djeu, T. Kasahara, W. Domiz, A. Procopio, I. Blanca, J. Ortaldo and J. J. Oppenheim, Cytokine production by human large granular lymphocytes (LGL), in: “Natural Killer Activity and Its Regulation,” T. Hoshino, H. S. Koren and A. Uchida, eds., Excerpta Medica Ltd., Tokyo (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ronald B. Herberman
    • 1
  1. 1.Biological Response Modifiers ProgramNational Cancer InstituteFrederickUSA

Personalised recommendations