Skip to main content

Bifurcation Geometry in Physics

  • Chapter
  • 403 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 135))

Summary

The application of bifurcation theory to nonlinear physical problems is reviewed. It is shown that the topological singularities and bifurcation processes deriving from the concept of structural stability determine the most significant phenomena observed in both structure formation and structure recognition. From this emerges a unifying geometrical framework for the description of nonlinear physical systems which, when passing through instabilities, exhibit analogous critical behavior both at the microscopic and macroscopic levels. After a survey on the basic concepts of singularity and bifurcation theory some new developments are outlined. These include nonlinear conservation laws in various physical fields, the relation between analytical and topological singularities in the inverse scattering problem and in phonon focusing, interacting Hopf and steady-state bifurcations in nonlinear evolution equations and applications to optical bistability and neuronal activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Nicolis and I. Prigogine, “Self-organization in nonequilibrium systems,” Wiley (1977).

    Google Scholar 

  2. H. Haken, “Synergetics” (2nd Edition), Springer (1982) and “Advanced Synergetics,” Springer (1983).

    Google Scholar 

  3. R. Thorn, “Structural Stability and Morphogenesis,” Benjamin (1975).

    Google Scholar 

  4. T. Poston and I. Stewart, “Catastrophe Theory and Applications,” Pitman, London (1978). I. Stewart, Physica 2D: 245 (1981).

    Google Scholar 

  5. E. C. Zeeman, “Catastrophe Theory,” Addison-Wesley (1977). R. Gilmore, “Catastrophe Theory,” Wiley (1981).

    Google Scholar 

  6. M. V. Berry, “Les Houches Lectures”, (1980).

    Google Scholar 

  7. W. Güttinger and H. Eikemeier (Eds.), “Structural Stability in Physics,” Springer (1979).

    Google Scholar 

  8. V. I. Arnold, “Mathematical Methods of Classical Mechanics,” Springer (1978).

    Google Scholar 

  9. M. Golubitsky and D. Schaeffer, Comm. Pure Appl. Math. 32:21 (1979). M. Golubitsky and W. F. Langford, J. Diff. Equs. 41:375 (1981). D. G. Schaeffer and M. Golubitsky, Arch. Rat. Mech. Anal. 75:315

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Golubitsky and D. Schaeffer, Comm. Math. Phys. 67:205 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. H. Sattinger, Bull. Am. Math. Soc. 3:779 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Dangelmayr and D. Armbruster, Proc. London Math. Soc. 46 (3):517 (1983).

    Article  MathSciNet  Google Scholar 

  13. M. Golubitsky, B. L. Keyfitz and D. Schaeffer, Comm. Pure Appl. Math. 34:433 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. S. Labouriau, “Applications of Singularity Theory to Neurobiology,” Univ. of Warwick preprint (1983).

    Google Scholar 

  15. I. S. Labouriau, “Applications of Singularity Theory to Neurobiology,” Univ. of Warwick preprint (1983).

    Google Scholar 

  16. Geiger and W. Giittinger, in preparation (1984).

    Google Scholar 

  17. Geiger and W. Giittinger, in preparation (1984).

    Google Scholar 

  18. Armbruster and W. Güttinger, in preparation (1984).

    Google Scholar 

  19. Dangelmayr and W. Güttinger, Geophys, J. Roy. Astro. Soc. 71:79 (1982)

    MATH  Google Scholar 

  20. W. Güttinger and F. J. Wright, Topological Approach to inverse scattering in remote sensing, NATO-ARW proceedings, Reidel (1984).

    Google Scholar 

  21. W. Güttinger and F. J. Wright, Topological Approach to inverse scattering in remote sensing, NATO-ARW proceedings, Reidel (1984).

    Google Scholar 

  22. N. Bleistein and J. Cohen, US Nav. Res. Rep. MS-R-7806 (1978).

    Google Scholar 

  23. J. B. Keller and I. Papadakis, “Wave Propagation and underwater acoustics,” Springer (1977).

    Book  MATH  Google Scholar 

  24. J. B. Keller and I. Papadakis, “Wave Propagation and underwater acoustics,” Springer (1977).

    Google Scholar 

  25. Baltes, “Inverse Scattering in Optics,” Springer (1980).

    Google Scholar 

  26. W. M. Boerner in [24].

    Google Scholar 

  27. H. Eisenmenger, K. Lassmann and S. Döttinger (Eds.), “Phonon Scattering in Condensed Matter,” Springer (1984).

    Google Scholar 

  28. F. J. Wright, preprint (1984), see also [20].

    Google Scholar 

  29. F. J. Wright, preprint (1984), see also [20].

    Google Scholar 

  30. M. V. Berry and C. Upstill in: “Progress in Optics,” E. Wolf (Ed.), (1980).

    Google Scholar 

  31. T. Poston and I. Stewart in [4].

    Google Scholar 

  32. F. J. Wright in [28], G. Dangelmayr and W. Giittinger in [19].

    Google Scholar 

  33. J. P. Wolfe, Phys. Today, 33: 44 (1980).

    Google Scholar 

  34. P. Taborek and D. Goodstein, Solid State Comm., 33:1191 (1980). Cf. also Ref. [26].

    Google Scholar 

  35. D. Armbruster and G. Dangelmayr, Z. Phys. B, 52:87 (1983). D. Armbruster, G. Dangelmayr and W. Güttinger in [26]

    Google Scholar 

  36. D. Armbruster, G. Dangelmayr and W. Giittinger, Imperfection Sensitivity of interacting Hopf and Steady-State Bifurcations and their Classification, Physica D (1984).

    Google Scholar 

  37. D. Armbruster in Ref. T[5].

    Google Scholar 

  38. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,” Springer (1983).

    Google Scholar 

  39. R. Bonifacio (Ed.), “Dissipative Systems in Quantum Optics,” Springer (1982).

    Google Scholar 

  40. See Ref. [15].

    Google Scholar 

  41. F. Takens, Singularities of vector fields, Publications of the IHES, 43: 47 (1974).

    MathSciNet  Google Scholar 

  42. J. P. Eckmann, Rev. Mod. Phys., 53:643 (1981). E. C. Zeeman, in: “New Directions in Applied Mathematics,” Case Western Reserve University (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Güttinger, W. (1986). Bifurcation Geometry in Physics. In: Moore, G.T., Scully, M.O. (eds) Frontiers of Nonequilibrium Statistical Physics. NATO ASI Series, vol 135. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2181-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2181-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9284-5

  • Online ISBN: 978-1-4613-2181-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics