The One-Atom Maser - A Test System for Simple Quantum Electro-Dynamic Effects

  • Herbert Walther
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

The experimental demonstration of the maser has generated a large amount of interest in theoretical models describing the interaction of two-level atoms with a single mode of an electromagnetic field in a cavity.1,2,3 The first models treated purely academic problems, but, modified versions were stimulated which then led to an understanding of a major part of the experimentally observed phenomena, including also the even larger variety of effects observed after the laser was invented. It is a characteristic feature of maser and laser experiments that large numbers of atoms and photons are present. One reason for this is the small size of the matrix elements describing the atom-radiation interaction. Therefore, when only a small amount of photons are involved in an experiment the atom-field evolution time usually becomes much longer than other characteristic times of the system, such as the atomic relaxation, the atom-field interaction time, and the cavity mode damping time. The fundamental theories of radiation-matter interaction involving single electromagnetic modes and small photon occupation numbers therefore could not be tested experimentally so far. They predict, however, some interesting and basic effects; these include:
  1. (1)

    Modification of the spontaneous emission rate of a single atom in a resonant cavity

     
  2. (2)

    Oscillatory energy exchange between a single atom and the cavity mode

     
  3. (3)

    Disappearance and quantum revival of optical nutation induced on a single atom by a resonant field.

     

Keywords

Microwave Welding Helium Strontium Germanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  2. 2.
    L. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, ( New York (1975).Google Scholar
  3. 3.
    P.L. Knight, P.W. Milonni, Phys. Rev. C66, 21 (1980)MathSciNetGoogle Scholar
  4. 4.
    J.A.C. Gallas, G. Leuchs, H. Walther, H. Figger, in Advances in Atomic and Molecular Physics, Vol. 20, pp. 412–466, Academic Press, New York 1984.Google Scholar
  5. 5.
    D. Kleppner, M.G. Littman, M.L. Zimmerman, in Rydberg States of Atoms and Molecules, ed. by R.F. Stebbings and F.B. Dunning, pp. 73–116, Cambridge Univ. Press. London and New York (1983).Google Scholar
  6. 6.
    D. Delande, J.C. Gay, Comments At. Mol. Phys. 13, 275 (1983).Google Scholar
  7. 7.
    D.R. Bates, A. Damgaard, Philos. Trans. R. Soc. London 242, 101 (1949).ADSMATHCrossRefGoogle Scholar
  8. 8.
    T.F. Gallagher, W.E. Cooke, Phys. Rev. Lett. 42, 835 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    S. Haroche, C. Fabre, M. Goy, M. Gross, J.M. Raimond, in Laser Spectroscopy IV, ed by H. Walther and K.W. Rothe, Springer Series in Optical Sciences Vol. 21, Springer Verlag, Berlin and New York (1979).Google Scholar
  10. 10.
    E.J. Beiting, G.F. Hildebrandt, F.G. Kellert, G.W. Foltz, K.A. Smith, F.B. Dunning, R.F. Stebbings, J. Chem. Phys. 70, 3551 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    G. Rempe, Diploma Thesis, University of Munich (1981).Google Scholar
  12. 12.
    P.R. Koch, H. Hieronymus, A.F.J. Van Raan, W. Raith, Physics Letters, 75A, 273 (1980).ADSGoogle Scholar
  13. 13.
    H. Figger, G. Leuchs, R. Straubinger, H. Walther, Opt. Comm. 33, 37 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    C.H. Townes, A.G. Schawlow, Microwave Spectroscopy, McGraw Hill, New York (1955).Google Scholar
  15. 15.
    J.W. Farley, W.H. Wing, Phys. Rev. A23, 2397 (1981).ADSGoogle Scholar
  16. 16.
    L. Hollberg, J.L. Hall, in Laser Spectroscopy VI, ed. by H.P. Weber and W. Lüthy, Springer Series in Optical Sciences, Vol. 40, Springer Verlag, Berlin and New York (1983).Google Scholar
  17. 17.
    T.F. Gallagher, W. Sandner, K.A. Safinya, W.E. Cook, Phys. Rev. A23, 2065 (1981).ADSGoogle Scholar
  18. 18.
    S. Haroche, Ann. Phys. (Paris) 6, 189 (1971).Google Scholar
  19. 19.
    S. Haroche, C. Fabre, J.M. Raimond, D. Goy, M. Gross, L. Moi, Journ. de Physique 43, C2–265 (1982).Google Scholar
  20. 20.
    E.M. Purcell, Phys. Rev. 69, 681 (1946).CrossRefGoogle Scholar
  21. 21.
    D. Kleppner, Phys. Rev. Lett. 47, 233.Google Scholar
  22. 22.
    S. Haroche, J.M. Raimond, in Advances in Atomic and Molecular Physics Vol. 20, Academic Press, New York 1984.Google Scholar
  23. 23.
    K.H. Drexhage, in Progress in Optics Vol. 12, ed. by E. Wolf, p. 165, North-Holland, Amsterdam (1974).Google Scholar
  24. 24.
    A. Vaidyanthan, W. Spencer, D. Kleppner, Phys. Rev. Lett. 47, 1592 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    G. Gabrielse, H. Dehmelt, to be published and G. Gabrielse,, R. Van Dyck Jr., J. Schwinberg, H. Dehmelt, Bull. Am. Phys. Soc. 29, 926 (1984).Google Scholar
  26. 26.
    P. Goy, J.M. Raimond, M. Gross, S. Haroche, Phys. Rev. Lett 50, 1903 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    D. Meschede, H. Walther, G. Müller, Phys. Rev. Lett., in print.Google Scholar
  28. 28.
    P. Meystre, Thesis, Ecole Polytechnique Federale, Lausanne (1974).Google Scholar
  29. 29.
    J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Herbert Walther
    • 1
  1. 1.Sektion PhysikUniversität München and Max-Planck-Institut für QuantumoptikGarchingFed. Rep. of Germany

Personalised recommendations