Skip to main content

Use of Quantum Trajectories for Time-Dependent Problems

  • Chapter
Frontiers of Nonequilibrium Statistical Physics

Part of the book series: NATO ASI Series ((NSSB,volume 135))

  • 405 Accesses

Abstract

Ehrenfest’s principle states the correspondence between a classical trajectory and the expectation values of the corresponding quantum operator. In most cases the equations of motion for the average values of momentum, position, etc. are not closed and, therefore, cannot be solved without further assumptions. It is then useful to rewrite the Schrodinger equation as a time-dependent eigenvalue equation. In the following we shall outlines (1) how to solve the eigenvalue problem within variational perturbation theory, (2) how to calculate quantum trajectories, and (3) how to determine transition probabilities from trajectories. The method presented here will be illustrated by two examples from scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kleber and J. Zwiegel, Phys. Rev. A19, 579 (1979).

    Article  ADS  Google Scholar 

  2. K. Unterseer and M. Kleber, Nucl. Instr. and Meth. 192, 35 (1982).

    Article  ADS  Google Scholar 

  3. M. S. Child, “Molecular Collision Theory”, Academic Press, London and New York 1974.

    Google Scholar 

  4. W. Elberfeld and M. Kleber, J. Phys. B16, 3557 (1983).

    MathSciNet  ADS  Google Scholar 

  5. H. W. Lee and M. O. Scully, J. Chem. Phys. 73, 2238 (1980).

    MathSciNet  ADS  Google Scholar 

  6. L. Spruch in “Boulder Lectures in Theoretical Physics”, Gordon and Breach, New York 1969, Vol. XI-C, p. 77.

    Google Scholar 

  7. L. Aspinall and J. C. Percival, J. Phys. B1, 589 (1968).

    ADS  Google Scholar 

  8. J. Krause and M. Kleber, to be published in Phys. Rev. A.

    Google Scholar 

  9. Yu. N. Demkov, Sov. Physics JBTP 11 1351 (1960).

    MathSciNet  MATH  Google Scholar 

  10. M. Clemente, et al., Phys. Lett. 137B, 41 (1984).

    Google Scholar 

  11. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kleber, M. (1986). Use of Quantum Trajectories for Time-Dependent Problems. In: Moore, G.T., Scully, M.O. (eds) Frontiers of Nonequilibrium Statistical Physics. NATO ASI Series, vol 135. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2181-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2181-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9284-5

  • Online ISBN: 978-1-4613-2181-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics