Skip to main content

Diagnostic Methods in Alzheimer’s Disease: Magnetic Resonance Brain Imaging and CSF Neurotransmitter Markers

  • Chapter
Alzheimer’s and Parkinson’s Disease

Abstract

The clinical diagnosis of Alzheimer’s disease (AD) depends upon a history of progressive cognitive impairments, lack of focal neurological signs, and laboratory tests that exclude other known causes of dementia (1,2). A definitive diagnosis of AD depends upon characteristic histopathological features, including abundant senile plaques and neurofibrillary tangles in the cortical neuropil (3,4). Other anatomical features include decreased numbers of neurons in the nucleus basalis of Meynert (5), the brain stem nucleus locus coeruleus (6,7), and the frontal and temporal cortices (8). Frequent neurochemical correlates of AD are decreased choline acetyltransferase (CAT), acetylcholinesterase (AChE), glutamic acid decarboxylase (GAD), and butyrylcholinesterase (BuChE) activities, and decreased somatostatin, norepinephrine, and serotonin levels (9–20). Diagnosis of AD would be enhanced greatly if it were possible to detect any of these pathological or neurochemical changes in patients before death. Without such measures, the clinical diagnosis of AD is confirmed pathologically in only 60–75% of the cases (21, 22); in these instances, Parkinson’s disease (PD) and vascular disease are the most prevalent unrecognized causes of dementia. This chapter describes our experience with two approaches that may render diagnosis of the dementias more accurate: morphological studies with magnetic resonance imaging (MRI) of the brain and biochemical analyses of neurotransmitter markers in the cerebrospinal fluid (CSF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corkin S, Growdon JH, Rasmussen SL: Parental age as a risk factor in Alzheimer’s disease, Ann Neurol 13: 674–676, 1983.

    Article  PubMed  CAS  Google Scholar 

  2. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Dept. of Health & Human Services Task Force on Alzheimer’s Disease. Neurol 34: 940, 1984.

    Google Scholar 

  3. Corsellis JAN: Aging and the dementias. In: Greenfield’s Neuropathology. Blackwood W, Corsellis JAN (eds). 1976, London, Edward Arnold, pp. 849–902.

    Google Scholar 

  4. Terry RD: Structural changes in the dementia of the Alzheimer’s type. In: Aging of the Brain and Dementia. Amaducci L, et al (eds). 1980, Raven Press, New York, pp 23–32.

    Google Scholar 

  5. Whitehouse PH, Price DL, Coyle JT, DeLong MR: Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Mann DMA, Lincoln J, Yates PO et al: Changes in monoamine containing neurons of the human CNS in senile dementia. Brit J Psychiatry 236: 533–541, 1980.

    Article  Google Scholar 

  7. Bondareff W, Mountjoy CQ, Roth M: Loss of neurons of origin of the adrenergic projection of the cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurol 32: 164–168, 1982.

    CAS  Google Scholar 

  8. Terry RD, Peck A, DeTheresa R, Schechter R, Horoupian DS; Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Davies P, Maloney AFJ: Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 1403, 1976.

    Google Scholar 

  10. Perry EK, Tomlinson BE, Blessed BE, Bergmann K, Gibson PH, Perry RH: Correlation of cholinergic abnormalities with senile plaques and mental scores in senile dementia. Brit Med J 2: 1457–1459, 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Bowen DM, Sims NR, Benton S, Haan EA, Smith CCT, Neary D et al: Biochemical changes in cortical brain biopsies from demented patients in relation to morphological findings and pathogenesis. In: Alzheimer’s Disease: A Report of Progress in Research. Corkin S, Davis KL, Crowdon JH et al. (eds). 1982, Raven Press, New York, pp. 1–8.

    Google Scholar 

  12. Op Den Velde W, Stam FC: Some cerebral proteins and enzjone systems in Alzheimer’s presenile and senile dementia. J Amer Geriat Soc 1: 12–16, 1976.

    Google Scholar 

  13. Rossor MN, Emson PC, Iversen LL, Mountjoy CQ, Roth M, Fahrenkrug J, Rehfeld JF: Neuropeptides and neurotransmitters in cerebral cortex in Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress in Research. Corkin S, Davis KL, Growdon JH et al. (eds). 1982, Raven Press, New York, pp. 15–24.

    Google Scholar 

  14. Perry RH, Candy JM, Perry K, Irving D, Blessed G, Fairbain AF, Tomlinson BE: Extensive loss of choline acetyltransferase is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci Lett 33: 311–315, 1983.

    Article  Google Scholar 

  15. Adolfsson R, Gottfries CG, Roos BE, Winblad B: Changes in the brain catecholamines in patients with dementia of the Alzheimer type. Brit J Psychiatry 135: 216–233, 1979.

    Article  CAS  Google Scholar 

  16. Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE. Monoamine metabolism in senile dementia of the Alzheimer type. J Neurol Sci 60: 383–392, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Bowen DM, Allan SJ, Benton JS et al: Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41: 266–272, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JAN: Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43: 1574–1581, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Davies P, Katzman R, Terry RD: Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 228: 279–280, 1980.

    Article  Google Scholar 

  20. Mountjoy CQ, Rossor MN, Iversen LI, Roth M: Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 107: 507–518, 1984.

    Article  PubMed  Google Scholar 

  21. Terry RD: Aging, senile dementia, and Alzheimer’s disease. In: Alzheimer’s Disease: Senile Dementia and Related Disorders, Katzman R, Terry RD, Bick KL (eds). New York, Raven Press, 1978, pp. 11–14.

    Google Scholar 

  22. Davies P, Katz DA, Crystal HA: Choline acetyltransferase, somatostatin, and substance P in selected cases of Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress in Research, Corkin S, Davis K, Growdon JH et al (eds). 1982, Raven Press, New York, pp. 9–14.

    Google Scholar 

  23. Lauterbur PC: Image formation by induced local interactions: examples employing NMR. Nature 242: 190–191, 1973.

    Article  CAS  Google Scholar 

  24. Kaufman L, Crooks, LE, Margulis AR: Nuclear Magnetic Resonance Imaging in Medicine. 1981, Igaku-Shoin, New York.

    Google Scholar 

  25. Witcofski RL, Karstaedt N, Aparlain CL: NMR Imaging. 1982, Bowman Gray School of Medicine Press, Winston-Salem.

    Google Scholar 

  26. Buonanno FS, Pykett IL, Brady TJ, Pohost CM: Clinical application of nuclear magnetic resonance. Disease-a-Month 29 (8), 1983.

    Google Scholar 

  27. Kramer CL, Buonanno FS: Physical principles of nuclear magnetic resonance and its application to imaging. In: Head and Spine Imaging, Gonzalez CF, Grossman CB, Marsden JC (eds). 1985, J Wiley & Sons, New York, pp. 859–887.

    Google Scholar 

  28. Doyle FM, Gorew JC, Pennock JM, Bydder GM, Steiner R, Young IR, Burl M, Loq, AH, Gilderdle DH, Bailes DR: Imaging of the brain by nuclear Loq, AH, gilderdle DH, Bailes DR: Imaging of the brain by nuclear magnetic resonance, Lancet ii; 56–57, 1981.

    Google Scholar 

  29. Bydder GM, Steinre R, Young IR, Hall AA, Thomas AD, Marshall H, Pallis CA, Legg NJ: Clinical NMR imaging of the brain: 140 cases. Amer J Radiology 139: 215–236, 1982.

    CAS  Google Scholar 

  30. Bailes DR, Young IR, Thomas TJ, Straughan, K, Bydder GM, Steiner RE: NMR imaging of the brain using spin-echo sequences, Clin Radiology 33: 395–414, 1982.

    Article  CAS  Google Scholar 

  31. Lukes SA, Aminoff MJ, Mills C, Normal D, Newton TH: Comparison of nuclear magnetic resonance an computed tomographic findings in patients with extrapyramidal movement disorders. Ann Neurol 12: 88, 1982.

    Google Scholar 

  32. Buonanno FS, Brady TJ, Pykett IL, et al.: NMR clinical results: Masssachusetts General Hospital. In: Nuclear Magnetic Resonance (NMR) Imaging. Partain CL, James AE, Rollo FD, Price RA (eds). Saunders, Philadelphia, 1983, pp. 207 - 230.

    Google Scholar 

  33. DeWitt LD, Buonanno FS, Kistler JP, Brady TJ, Pykett IL, Goldman MR, Davis KR: Nuclear magnetic resonance imaging in evaluation of clinical stroke syndromes. Ann Neurol 16: 535–545, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Lukes SA, Crooks LE, Aminoff MJ, Kaufman L, Panitch HS, Mills C, Norman D: Nuclear magnetic resonance imaging in multiple sclerosis. Ann Neurol 13: 592–601, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Besson JAO, Corrigan FM, Foreman EI, Ashcroft GW, Eastwood LM, Smith FW: Differentiating senile dementia of Alzheimer type and multi-infarct dementia by proton NMR imaging. Lancet ii: 789, 1983.

    Google Scholar 

  36. Blessed G, Tomlinson BE, Roth M: The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Brit J Psychiat 114: 797–811, 1968.

    Article  PubMed  CAS  Google Scholar 

  37. Gibson CJ, Logue M, Growdon JH: CSF monoamine metabolite levels in Alzheimer’s and Parkinson’s disease. Arch Neurol 42: 489–495, 1985.

    PubMed  CAS  Google Scholar 

  38. Nissen MJ, Corkin S, Buonanno FS, Growdon JH, Wray SH, Bauer J: Spatial contrast sensitivity in Alzheimer’s disease: general findings and a case report. Arch Neurol 42: 667–671, 1985.

    PubMed  CAS  Google Scholar 

  39. Huckman MS, Fox J, Topel J: The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology 116: 85–92, 1975.

    PubMed  CAS  Google Scholar 

  40. DeLeon MJ, Ferris SH, George AE, Reisberg, B, Kricheff II, Gershon S: Computed tomography evaluations of brain-behavior relationships in senile dementia of the Alzheimer’s type. Neurobiol Aging 1: 69–79, 1980.

    Article  CAS  Google Scholar 

  41. Hughes CP, Gado MH: Computed tomography and aging of the brain. Radiology 139: 391–396, 1981.

    PubMed  CAS  Google Scholar 

  42. Albert M, Naeser MA, Levine HL, Garvey AH: Ventricular size in patients with presenile dementia of the Alzheimer type. Arch Neurol 41: 1258–1263, 1984.

    PubMed  CAS  Google Scholar 

  43. Roberts MA, Caird FI: Computerized tomography and intellectual impairment in the elderly. J Neurol Neurosurg Psychiat 39: 986–989, 1976.

    Article  PubMed  CAS  Google Scholar 

  44. Ford CV, Winter J: Computerized axial tomograms and dementia in elderly subjects. J Gerontol 36: 164–169, 1980.

    Google Scholar 

  45. Gado MH, Hughes CP, Danziger AW, Chi D, Jost G, Berg L: Volumetric measurements of the cerebrospinal fluid spaces in subjects with dementia and in controls. Radiology 144: 535–538, 1982.

    PubMed  CAS  Google Scholar 

  46. Wilcock GK, Esiri MM, Bowen DM, Smith CCT: Alzheimer’s disease: Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57: 407–417, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Bennett-Clark C, Romagno MA, Joseph SA: Distribution of somatostatin in the rat brain: telencephalon and diencephalon. Brain Res 188: 473–486, 1980.

    Article  Google Scholar 

  48. Delfs J, Robbins R, Connolly JL, Dichter M, Reichlin S: Somatostatin production by rat cerebral neurons in dissociated cell culture. Nature 2: 676–677, 1980.

    Article  Google Scholar 

  49. Rössor MW, Effison PC, Mountjoy CQ, Roth M, Iversen LL: Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer’s type. Neurosci Lett 20; 373–377, 1980.

    Article  PubMed  Google Scholar 

  50. Ferrier IN, Cross AJ, Johnson HA, Roberts GW, Crow TJ, Corsellis JAN, Lee YC, O’Shaughnessy D, Adrian TE, McGregor GP, Baracrese-Hamilton AJ, Bloom SR: Neuropeptides in Alzheimer’s type dementia. J Neurol Sci 62, 159–170, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Nemoroff CB, Bissette G, Busby WH, Youngblood WW, Rossor M, Roth M, Kizer JS: Regional brain concentrations of neurotensin, thyrotropin releasing hormone and somatostatin in Alzheimer’s disease. Neurosci Abstr 9; 1052, 1983.

    Google Scholar 

  52. Beal MF, Mazurek MF, Tran VT, Chattha G, Bird ED, Martin JB: Reduced numbers of somatostatin receptors in cerebral cortex in Alzheimer’s disease. Science 229: 289–291, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Perry EK, Blessed G, Tomlinson BE,M Perry RH, Crow TJ, Cross AJ, Dockray GJ, Dimaline R, Arregue A: Neurochemical activities in human temporal lobe related to aging with Alzheimer type changes. Neurobiol Aging 251–256, 1981.

    Google Scholar 

  54. Adolfsson R, Gottfries CG, Roos BE et al: Changes in the brain catecholamines in patients with dementia of Alzheimer type. Brit J Psychiat 135: 216–223, 1979.

    Article  PubMed  CAS  Google Scholar 

  55. Foote SL, Bloom FE, Ashton-Jones G: Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 844–914, 1983.

    Google Scholar 

  56. Ishii T: Distribution of Alzheimer’s neurofibrillary changes in the brainstem and hypothalamus of senile dementia. Acta Neurol Path 181–187, 1983.

    Google Scholar 

  57. Adams RD, Victor M (eds). Principles of Neurology. 1981, McGraw-Hill, New York.

    Google Scholar 

  58. Goldberg AM, McCaman RE: The determination of picamole amounts of acetylcholine in mammalian brain. J Neurochem 20: 1–8, 1973.

    Article  PubMed  CAS  Google Scholar 

  59. Ellman GL, Courtney KD, Andres V, Featherstone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95, 1961.

    Article  PubMed  CAS  Google Scholar 

  60. Arnold MA, Reppert SM, Rorstad OP, Sagar SM, Jeutmann HT, Perlow MJ, Martin JB: Temporal patterns of somatostatin immunoreactivity in the cerebrospinal fluid of the rhesus monkey: effect of environmental lighting. J Neurosci 2: 574–580, 1982.

    Google Scholar 

  61. Hefti F: A simple, sensitive method for measuring 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat brain tissue using high performance liquid chromatography with electrochemical detection. Life Sci 25: 775–782, 1979.

    Article  PubMed  CAS  Google Scholar 

  62. Christie JE, Blackburn AM, Glen AIM, Zeisel S, Shering A, Yates CM: Effects of choline lecithin on CSF choline levels and on cognitive function in patients with presenile dementia of the Alzheimer type. In: Nutrition and the Brain, Barbeau A, Growdon JH, Wurtman RJ (eds). Raven Press, New York, pp. 377–388, 1979.

    Google Scholar 

  63. Growdon JH, Cohen EL, Wurtman RJ: Effects on oral choline administration on serum and CSF choline levels in patients with Huntington’s disease. J Neurochem 28: 229–231, 1977.

    Article  PubMed  CAS  Google Scholar 

  64. Davis KL, Hsieh JY-K, Levy MI, Horvath TB, Davis BM, Mohs, RC: Cerebrospinal fluid acetylcholine, choline, and senile dementia of the Alzheimer type. Psychopharm Bull 18: 193–195, 1982.

    CAS  Google Scholar 

  65. Gardiner JE, Domer FR: Movement of choline between the blood and cerebrospinal fluid in the cat. Arch Int Pharmacodyn Ther 175: 482–496, 1968.

    PubMed  CAS  Google Scholar 

  66. Schuberth J, Henden DJ: Transport of choline from plasma to cerebrospinal fluid in the rabbit with reference to the origin of choline and to acetylcholine metabolism in brain. Brain Res 84: 245–256, 1975.

    Article  PubMed  CAS  Google Scholar 

  67. Aquilonius SM, Nystrom B, Schunerth J, Sundwall A: Cerebrospinal fluid choline in extrapyramidal disorders. J Neurochem 28: 229–231, 1972.

    Google Scholar 

  68. Jonsson LE, Schuberth J, Sundwall A: Amphetamine effect on the choline concentration of human cerebrospinal fluid. J Neurochem 28: 229–231, 1969.

    Google Scholar 

  69. Davis PL Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171: 319–327, 1979.

    Google Scholar 

  70. Johnson S, Domino EF: Cholinergic enzymatic activity of cerebrospinal fluid in patients with various neurological diseases. Clin Chim Acta 25: 421 - 428, 1971.

    Article  Google Scholar 

  71. Wood PL, Etienne P, Lai S, Gauthier S, Cajal S, Nair P: Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31: 2073-2–79, 1982.

    Google Scholar 

  72. Deutsch SI, Mohs RC, Rothpearl AB, Horvath TB, Davis KL: CSF acetylcholinesterase activity in neuropsychiatric disorders. Bio Psychiat 18: 1363–1373, 1983.

    CAS  Google Scholar 

  73. Soininen H, Halonen T, Riekkinen PJ: Acetylcholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 217–224, 1981.

    Article  PubMed  CAS  Google Scholar 

  74. Tune L, Gucker S, Folstein M, Oshida L, Coyle JT: Cerebrospinal fluid acetylcholinesterase activity in seniile dementia of the Alzheimer type. Ann Neurol 17: 46 - 48, 1985.

    Article  PubMed  CAS  Google Scholar 

  75. Arendt T, Bigl V, Walther F, Sonntag M: Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer’s disease. Lancet i: 173, 1984.

    Google Scholar 

  76. Appleyard ME, Smith AD, Wilcock GK, Esiri MM: Decreased CSF acetylcholinesterase activity in Alzheimer’s disease. Lancet i: 452 1983.

    Google Scholar 

  77. Huff FJ, Maire J-C, Growdon sJH, Corkin S, Wurtman RJ: CSF cholinesterases in Alzheimer’s disease. Neurol (Suppl 1 ): 218, 1985

    Google Scholar 

  78. Oram JJ, Edwardson J, Millard PH: Investigation of cerebrospinal fluid neuropeptides in idiopathic senile dementia. Gerontology 27: 216–223, 1981.

    Article  PubMed  CAS  Google Scholar 

  79. Soininen HS, Jolkonen sJT, Reinidainen KJ, Halonen TO, Riekkinen PJ: Reduced Cholinesterase activity and somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 63: 167–172, 1984.

    Article  PubMed  CAS  Google Scholar 

  80. Francis PT, Bowen DM, Neary D, Palo J, Wikstrom J, Olney N: Somatostatin-like Immunoreactivity in lumbar cerebrospinal fluid from neurohistologically examined demented patients. Neurobiol Aging 5: 183–186, 1984.

    Article  PubMed  CAS  Google Scholar 

  81. Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J: CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5: 187–189, 1984.

    Article  PubMed  CAS  Google Scholar 

  82. Thai LJ, Rosenbaum DM, Horowitz SG, Sharpless NS, Waltz JM, Amin IM: Alterations in CSF somatostatin in neurologic disease. Neurol 33 (Suppl 2): 119, 1983.

    Google Scholar 

  83. Gottfries CG, Gottfries E, Roos BE: Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid related to rated mental and motor impairment in senile and presenile dementia. Acta Psychiat Scand 49: 257–263, 1970.

    Article  Google Scholar 

  84. Gottfries CG, Roos BE: Acid monoamine metabolites in cerebrospinal fluid patients from patients with presenile dementia (Alzheimer’s disease). Acta Psychiat Scand 49: 257–263, 1973.

    Article  Google Scholar 

  85. Gottfries CG, Kjallquist A, Ponten Y, Roos BE, Sundbarg G: Cerebrospinal fluid pH and monoamine and glucolytic metabolites in Alzheimer’s disease. Brit J Psychiat 124: 280–287, 1974.

    Article  PubMed  CAS  Google Scholar 

  86. Guard 0, Renaud B, Chazot G: Metabolisme cerebral de la dopamine et de la Serotonine au cours des maladies d’Alzheimer et de Pick. Etude djmamique par le test au probenecide. Encephale 2: 293–303, 1976.

    Google Scholar 

  87. Raskin MA, Peskind ER, Halter JB, Jimerson DX: Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch Gen Psychiat 41: 343–346, 1984.

    Google Scholar 

  88. Mann JJ, Stanley M, Neophytides A, deLeon MJ, Ferris SH, Gershon S. Central amine metabolism in Alzheimer’s disease: in vivo relationship to cognitive deficit. Neurobiol Aging 2: 57–60, 1981.

    Article  PubMed  CAS  Google Scholar 

  89. Beai MF, Growdon JH, Mazurek MF: CSF somatostatin in dementia. Neurol 34 (Suppl 1): 120, 1984.

    Google Scholar 

  90. Mazurek MF, Growdon JH, Beai MF: CSF vasopressin levels reduced in Alzheimer’s disease. Neurol 34 (Suppl 1): 280, 1984.

    Google Scholar 

  91. Foster NL, Hare TA, Chase TN: Spinal fluid GABA in Alzheimer’s disease. Neurol 33(Suppl 2):68, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Growdon, J.H. et al. (1986). Diagnostic Methods in Alzheimer’s Disease: Magnetic Resonance Brain Imaging and CSF Neurotransmitter Markers. In: Fisher, A., Hanin, I., Lachman, C. (eds) Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2179-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2179-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9283-8

  • Online ISBN: 978-1-4613-2179-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics