Skip to main content

Aluminum-Induced Changes in Calmodulin

  • Chapter

Part of the book series: NATO ASI Series ((ASIAS,volume 104))

Abstract

Calcium serves as a second messenger in bioregulation via various intracellular calcium trigger proteins such as calmodulin. As a result of a large variety of external stimuli, intracellular calcium transients are generated which can be interpreted as a signal. Within the lifetime of these transients, calcium ions are bound (signal input) to trigger proteins which undergo conformational changes. These changes play a key role in signal amplification and transmission (output) from the trigger protein to respective target enzymes and structural elements [1]. In view of this central reliance of cellular control on calcium ions and a few trigger proteins, severe repercussions on biochemical and physiological processes can be expected when the coupling between signal input and output is interrupted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.B. Klee, and T.G. Vanaman, Calmodulin, Adv. Protein Chem. 49: 489–515 (1982).

    Google Scholar 

  2. C.D. Foy, R.L. Chaney, and M.C. White, The physiology of metal toxicity in plants, Ann. Rev. Plant Physiol. 29: 511–566 (1978).

    Article  CAS  Google Scholar 

  3. R.J. Bennet, C.M. Breen, and M.V. Fey, Aluminium uptake sites in the primary root of Zea mays L., S.Afr. J. Plant Soil 2: 1–7 (1985).

    CAS  Google Scholar 

  4. R.J. Bennet, C.M. Breen, and M.V. Fey, The primary site of aluminium injury in the root of Zea mays L., S. Afr. J. Plant Soil 2: 8–17 (1985).

    CAS  Google Scholar 

  5. S.W. King, J. Savory, and M.R. Wills, The clinical biochemistry of aluminum, CRC Crit. Rev. Clin. Lab. Sei. 14: 1–20 (1981).

    Article  CAS  Google Scholar 

  6. D.P. Perl, D.C. Gajdusek, R.M. Garrato, R.Y. Yanagihara, and C.J. Gibbs, Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam, Science 217: 1053–1055 (1982).

    Article  CAS  Google Scholar 

  7. N. Siegel, and A. Haug, Aluminum interaction with calmodulin: Evidence for altered structure and function from optical and enzymatic studies, Biochim. Biophys. Acta 744: 36–45 (1983).

    Article  CAS  Google Scholar 

  8. A. Haug, Molecular aspects of aluminum toxicity, CRC Crit. Rev. Plant Sei. 1: 345–373 (1984).

    Article  CAS  Google Scholar 

  9. J. Burgess, “Metal Ions in Solution,” Ellis Horwood, Ltd., Chichester, pp. 259–416 (1978).

    Google Scholar 

  10. A.K. Campbell, “Intracellular Calcium,” J.Wiley xxamp; Sons, New York, pp. 85–134 (1983).

    Google Scholar 

  11. H. Einspahr, and C.E. Bugg, Crystal structure studies of calcium complexes and implications for biological systems, in “Metal Ions in Biological Systems,” H. Sigel, ed., Marcel Dekker, New York, vol. 17:51–97 (1984).

    Google Scholar 

  12. B.A. Levine, and D.C. Dalgarno, The dynamics and function of calcium-binding proteins, Biochim. Biophys. Acta, 726: 187–204 (1983).

    Article  CAS  Google Scholar 

  13. E.R. Nightingale, Phenomenological theory of ion solvation: Effective radii of hydrated ions, J.Phys. Chem. 63: 1381–1387 (1959).

    Article  CAS  Google Scholar 

  14. A. Noller, Catalysis from the standpoint of coordination chemistry, Acta Chim. Scient. Hung. 148: 429–448 (1982).

    Google Scholar 

  15. P.L. Privalov, Stability of proteins, Adv. Protein Chem. 35: 1–104 (1982).

    Article  CAS  Google Scholar 

  16. N. Siegel, R.T. Coughlin, and A. Haug, A thermodynamic and EPR study of structural changes in calmodulin induced by aluminum binding, Biochem. Biophys. Res. Comm. 115: 512–517 (1983).

    Article  CAS  Google Scholar 

  17. K.B. Seamon, and R.H. Kretsinger, Calcium-modulated proteins, in “Calcium in Biology,” T.G. Spiro, ed., Wiley xxamp; Sons, New York, pp. 1–51 (1983).

    Google Scholar 

  18. N. Siegel, and A. Haug, Aluminum-induced inhibition of calmodulin-regulated phosphodiesterase activity: Enzymatic and optical studies, Inorgan. Chim. Acta 79: 230–231 (1983).

    Article  Google Scholar 

  19. M. Tanokura, and K. Yamada, A calorimetric study of Ca2+ and Mg2+-binding by calmodulin, J. Biochem. Tokyo 94: 607–609 (1983).

    CAS  Google Scholar 

  20. R.F. Steiner, and H. Sternberg, Properties of the complexes formed by ANS with Phosphorylase kinase and calmodulin, Biopolym. 21: 1411–1425 1982

    Google Scholar 

  21. J. Krebs, A survey of structural studies of calmodulin, Cell Calcium 2: 295–311 (1981).

    Article  CAS  Google Scholar 

  22. M. Ikura, T. Hiraoki, K. Hikichi, T. Mikuni, M. Yazawa, and K. Yagi, NMR studies on calmodulin: Calcium-induced conformational change, Biochem. 22: 2573–2579 (1983).

    Article  CAS  Google Scholar 

  23. N. Siegel, and A. Haug, Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles: A biochemical model of aluminum toxicity in plants, Physiol. Plant. 59: 285–291 (1983).

    Article  CAS  Google Scholar 

  24. J.A. Cox, M.Comte, A.Malnoe, D.Burger, and E.A. Stein, Mode of action of the regulatory protein calmodulin, in “Metal Ions in Biological Systems,” H.Sigel, Ed., Marcel Dekker, New York, vol. 17:215–273 (1984).

    Google Scholar 

  25. S. Forsen, E. Thulin, T. Drakenberg, J. Krebs, and K. Seamon, A H3cd NMR study of calmodulin and its interaction with calcium, magnesium and trifluoperazine, FEBS Lettr. 117: 189–194 (1980).

    Article  CAS  Google Scholar 

  26. M. Karplus and J.A. McCammon, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9: 293–349 (1981).

    Article  CAS  Google Scholar 

  27. G. Careri, “Order and Disorder in Matter,” The Benjamin/Cummings Publ., Menlo Park, pp. 115–137 (1984).

    Google Scholar 

  28. S.J. Karlik, E.Tarien, 6.A. Elgavish, and G.L. Eichhorn, 2/Al NMR study of aluminum (III) interactions with carboxylase ligands, Inorgan. Chem. 22: 525–529 (1983).

    Article  CAS  Google Scholar 

  29. J.A. Cox, M. Comte, J.E. Fitton, and W.F. DeGrado, The interaction of calmodulin with amphiphilic peptides, J. Biol. Chem. 260: 2527–2534 (1985).

    CAS  Google Scholar 

  30. T.N. Tsalkova and P.L. Privalov, Thermodynamic study of domain organization in troponin C and calmodulin, J. Mol. Biol. 181: 533–544 (1985).

    Article  CAS  Google Scholar 

  31. C.G. Suhayda and A. Haug, Organic acids prevent aluminum-induced conformational changes in calmodulin, Biochem. Biophys. Res. Comm. 119: 376–381 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Haug, A., Weis, C. (1986). Aluminum-Induced Changes in Calmodulin. In: Trewavas, A.J. (eds) Molecular and Cellular Aspects of Calcium in Plant Development. NATO ASI Series, vol 104. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2177-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2177-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9282-1

  • Online ISBN: 978-1-4613-2177-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics