Lipid-Linked Intermediates in Crustacean Chitin Synthesis

  • M. N. Horst


In the arthropods, chitin is associated with protein 1,2. Although a structural role for the protein seems clear, a biosynthetic function is also possible, eg the protein may serve in the initial formation of a primer molecule. Regarding the origin of chitin synthesis primers, Cabib and co-workers found that partially purified chitin synthetase from Saccharomyces does not require an exogenous primer for chitin synthesis to occur.3 Similar results have been reported by Cohen4 who studied the in vitro synthesis of insect chitin. In both studies, the chitin synthetase preparation appears to contain an endogenous primer. Previous studies in my laboratory have shown that crustacean chitin synthetase will utilize both oligosaccharides of chitin and macromole- cular chitin as substrates.5 The crustacean enzyme is similar to its fungal counterpart in several respects, e.g., antibiotic sensitivity, but is clearly different in lacking protease activation properties and not being stimulated by GlcNAc.


Soluble Material Chitin Synthesis Mild Acid Hydrolysis Chitin Oligosaccharide Lipid Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hunt, “Polysaccharide-Protein Complexes in Invertebrates”. Academic Press, New York, N.Y. (1970).Google Scholar
  2. 2.
    P.R. Austin, C.J. Brine, J.E. Castle, and J.P. Zikakis, Chitin: New facts of research. Science 212: 749 (1980).CrossRefGoogle Scholar
  3. 3.
    M.S. Kang, N. Elango, E. Mattia, J. Au-Young, P.W. Robbins and E. Cabib, Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J. Biol. Chem. 259: 14966 (1984).PubMedGoogle Scholar
  4. 4.
    E. Cohen, In vitro chitin synthesis in an insect: formation and structure of microfibrils. Eur. J. Cell Biol. 16:289 (1982).Google Scholar
  5. 5.
    M.N. Horst, The biosynthesis of crustacean chitin by a microsomal enzyme from larval brine shrimp. J. Biol. Chem. 256:1412 (1981).PubMedGoogle Scholar
  6. 6.
    E. Cabib, B. Bowers and R.L. Roberts, Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc. Nat. Acad. Sei. USA 80:3318 (1983).CrossRefGoogle Scholar
  7. 7.
    L.A. Quesada Allue and E. Belocopitow, Lipid-bound oligosaccharides in insects. Eur. J. Bioch. 88:529 (1978).CrossRefGoogle Scholar
  8. 8.
    C.R. Krisman and R. Barengo, A precursor of glycogen biosynthesis: a-1,4-glucan-protein. Eur. J. Bioch. 52:117 (1975).CrossRefGoogle Scholar
  9. 9.
    H.E. Hopp, P.A. Romero, G.R. Daleo and R. Pont Lezica, Synthesis of cellulose precursors. The involvement of lipid-linked sugars. Eur. J. Bioch. 84:561 (1978).CrossRefGoogle Scholar
  10. 10.
    M.N. Horst, The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes. Arch. Biochem. Biophys. 223:254 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Elbein, The tunicamycins—useful tools for studies on glycoproteins. Trends in Biochem. Sei. August, 1981:219 (1981).CrossRefGoogle Scholar
  12. 12.
    D.M. Rast and S. Bartnicki-Garcia. Effects of amphotericin B, nystatin and other polyene antibiotics on chitin synthetase. Proc. Nat. Acad. Sei. USA 78: 1233 (1981).CrossRefGoogle Scholar
  13. 13.
    V. Dahn, H. Hagenmaier, H. Hohne, W. Konig, G. Wolf and H. Zahner. Stoffwechselprodukte von microorganismen. 154 Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitin synthese bei Pilzen, Arch. Microbiol. 107: 143 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Cohen and J. Casida, Properties and inhibition of insect integumental chitin synthetase. Pestic. Biochem. Physiol. 17: 301 (1982).Google Scholar
  15. 15.
    N. Ohta, K. Kakiki and T. Misato, Studies on the mode of action of polyoxin D. Part II. Effect of polyoxin D on synthesis of fungal cell wall chitin. Agr. Biol. Chem. 34: 1224 (1970).CrossRefGoogle Scholar
  16. 16.
    T. Leighton, E. Marks and F. Leighton, Pesticides: Insecticides and fungicides are chitin synthesis inhibitors. Science 213: 905 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    L.A. Quesada Allue, The inhibition of insect chitin synthesis by tunicamycin. Biochem. Biophys. Resh. Commun. 105: 312 (1982).CrossRefGoogle Scholar
  18. 18.
    R.T. Mayer, A.C. Chen and J.R. DeLoach. Chitin synthesis inhibiting insect growth regulators do not inhibit chitin synthetase. Experientia 37: 337 (1981).CrossRefGoogle Scholar
  19. 19.
    C.L. Villemez and P.L. Carlo, Properties of a soluble polyprenol phosphate UDP-GlcNAc: N-acetylglucosamine-l-phosphate transferase. J. Biol. Chem. 255: 8174 (1980).PubMedGoogle Scholar
  20. 20.
    R.K. Keller, D.Y. Boon and F.C. Crum, N-acetylglucosamine-1- phosphate transferase from hen oviduct: solubilization, characterization and inhibition by tunicamycin. Biochemistry 18: 3946 (1979).PubMedCrossRefGoogle Scholar
  21. 22.
    M.S. Kang, J.P. Spencer and A.D. Elbein, Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J. Biol. Chem. 253: 8860 (1978).PubMedGoogle Scholar
  22. 23.
    G. Sessa and G. Weissman, Incorporation of lysozyme into liposomes. J. Biol. Chem. 245: 3295 (1970).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. N. Horst
    • 1
  1. 1.Division of Basic Medical ScienceMercer University School of MedicineUSA

Personalised recommendations