Benzoylaryl Ureas: Insecticidal Compounds Interfering with Chitin Synthesis

  • A. G. M. Willems
  • M. S. Brouwer
  • B. Jongsma

Abstract

The development of selective crop protection products based on the interference with chitin biosynthesis in fungi and insects has been one of the aims in pesticide design for several decades. A major development in this field was the discovery of the mode of action of the fungicidal antibiotic polyoxin D by Japanese scientists1 in the period 1968–1970. In the same period, Dutch scientists at Duphar B.V. discovered the insecticidal activity of the benzoylphenylureas.

Keywords

Chitin Egypt Chitinase Benzoyl Glucosamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Endo, K. Kakiki, and T. Misato, Mechanism of action of the antifungal agent polyoxin D, J. Bacteriol. 104: 189 (1970).PubMedGoogle Scholar
  2. 2.
    R. Mulder and M. J. Gijswijt, The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition, Pestic. Sci. 4: 737 (1973).Google Scholar
  3. 3.
    J. J. van Daalen, J. Meltzer, R. Mulder, and K. Wellinga, A selective insecticide with a novel mode of action, Naturwissenschaften 59: 312 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Wellinga, R. Mulder, and J. J. van Daalen, Synthesis and laboratory evaluation of l-(2,6-disubsituted benzoyl)-3-phenylureas, A new class of insecticides I, l-(2,6-dichlorobenzoyl) 3-phenylureas, J. Agric. Food Chem. 21: 348 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Wellinga, R. Mulder, and J. J. van Daalen, Synthesis and laboratory evaluation of l-(2,6-disubstituted benzoyl)-3-phenylureas, A new class of insecticides II, Influence of the acyl moiety on insecti- cidal activity, J. Agric. Food Chem. 21: 993 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    C. H. Schaefer, T. Miura, W. H. Wilder, and F. S. Mulligan III, New substituted benzamides with promising activity against mosquitoes, J. Econ. Entomol. 71: 427 (1978).Google Scholar
  7. 7.
    L. A. Lacey and M. S. Mulla, Biological activity of diflubenzuron and three new IGRs against Simulium vittatum (Diptera: Simuliidae), Mosquito News 38: 377 (1978).Google Scholar
  8. 8.
    R. J. Sbragia, B. Bisabri-Ershadi, R. H. Rigterink, D. P. Clifford, and R. Dutton, XRD-473, a new acylurea insecticide effective against Heliothis, Proc. 10th Int. Congr. Plant Prot. 1: 417 (1983).Google Scholar
  9. 9.
    J. Granett, B. Bisabri-Ershadi, and M. J. Hejazi, Some parameters of benzoylphenylurea toxicity to beet armyworms (Lepidoptera: Noctuidae), J. Econ. Entomol. 76: 399 (1983).Google Scholar
  10. 10.
    H. M. Becher, P. Becker, R. Prokic-Immel, and W. Wirtz, CME-134, a new chitin synthesis inhibiting insecticide, Proc. 10th Int. Congr. Plant Prot. 1: 408 (1985).Google Scholar
  11. 11.
    N. P. Hajjar and J. E. Casida, Insecticidal benzoylphenylureas: structure-activity relationships as chitin synthesis inhibitors, Science 200: 1499 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Nakagawa, K. Kitahara, T. Nishioka, H. Iwamura, and T. Fujita, Quantitative structure-activity studies of benzoylphenylurea larvicides I. Effect of substituents at aniline moiety against Chilo suppressalis Walker, Pestic. Biochem. Physiol. 21: 309 (1984)Google Scholar
  13. 13.
    W. B. Nimmo, P. C. de Wilde, and A. Verloop, The degradation of diflubenzuron and its chief metabolites in soil. Part I: Hydrolytic cleavage of diflubenzuron, Pestic. Sci. 15: 574 (1984).Google Scholar
  14. 14.
    V. B. Nimmo. A. G. H. Willems, K. D. Joustra, and A. Verloop, The degradation of diflubenzuron and its chief metabolites in soil. Part II: Fate of 4 chlorophenylurea, Pest. Sci. 16: (submitted) (1985).Google Scholar
  15. 15.
    G. W. Ivie, D. L. Bull, and J. A. Veech, Fate of diflubenzuron in water, J. Agric. Food Chem. 28: 330 (1980).CrossRefGoogle Scholar
  16. 16.
    C. H. Schaefer and E. F. Dupras, Factors affecting the stability of SIR-8514 (2-chloro-N-[[[4-(trifluoromethoxy)phenyl]amino]- carbonyl]benzamide) under laboratory and field conditions, J. Agric. Food Chem. 27: 1031 (1979)CrossRefGoogle Scholar
  17. 17.
    A. C. Grosscurt, Effects of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata, J. Insect Physiol. 24: 827 (1978).CrossRefGoogle Scholar
  18. 18.
    A. C. Grosscurt and S. O. Andersen, Effects of diflubenzuron on some chemical and mechanical properties of the elytra of Leptinotarsa decemlineata, Proc. Kon. Ned. Akad. Wetensch. Amsterdam 83C: 143 (1980)Google Scholar
  19. 19.
    E. Hunter and J. F. Vincent, The effects of a novel insecticide on insect cuticle, Experientia 30: 1432 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    S. J. Yu and L. C. Terriere, Activities of hormone metabolizing enzymes in house flies treated with some substituted urea growth regulators, Life Sciences 17: 619 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    S. J. Yu and L. C. Terriere, Ecdysone metabolism by soluble enzymes from three species of Diptera and its inhibition by the insect growth regulator TH-6040, Pestic. Biochem. Physiol. 7: 48 (1977).Google Scholar
  22. 22.
    I. Ishaaya and J. E. Casida, Dietary TH 6040 alters composition and enzyme activity of housefly larval cuticle, Pestic. Biochem. Physiol. 4: 484 (1974).Google Scholar
  23. 23.
    D. H. Deul, B. J. de Jong, and J. A. M. Kortenbach, Inhibition of chitin synthesis by two l-(2,6-disubstituted benzoyl)-3-phenylurea insecticides II, Pestic. B.ochem. Physiol. 8: 98 (1978).Google Scholar
  24. 24.
    R. F. Ker, Investigations of locust cuticle using the insecticide diflubenzuron, J. Insect Physiol. 23: 39 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    R. T. Mayer, S. M. Neola, D. L. Coppage, and J. R. DeLoach, Utilization of imaginal tissues from pupae of the stable fly for the study of chitin synthesis and screening of chitin synthesis inhibitors, J. Econ. Entomol. 73: 76 (1980).Google Scholar
  26. 26.
    T. Mitsui, C. Nobusawa, and J. Fukami, Inhibition of chitin synthesis by diflubenzuron in Mamestra brassicae L., J. Pestic. Sci. 6: 155 (1981).Google Scholar
  27. 27.
    R. T. Mayer, A. C. Chen, and J. R. DeLoach, Characterization of a chitin synthase from the stable fly, Stomoxys calcitrans (L.), Insect Biochem. 10: 549 (1980).CrossRefGoogle Scholar
  28. 28.
    E. Cohen and J. E. Casida, Properties of Tribolium gut chitin synthetase, Pestic. Biochem. Physiol. 13: 121 (1980).Google Scholar
  29. 29.
    E. Cohen and J. E. Casida, Inhibition of gut chitin synthetase, Pestic. Bioch. Physiol. 13: 129 (1980).Google Scholar
  30. 30.
    E. Cohen and J. E. Casida, Insect chitin synthetase as a biochemical probe for insecticidal compounds, in: “Pesticide Chemistry: Human welfare and the environment”, J. Miyamoto and P. C. Kearney eds, Pergamon Press, Oxford, (1983).Google Scholar
  31. 31.
    T. Mitsui, C. Nobusawa, and J. Fukami, Mode of inhibition of chitin synthesis by diflubenzuron in the cabbage armyworm, J. Pestic. Sci. 9: 1 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. G. M. Willems
    • 1
  • M. S. Brouwer
    • 1
  • B. Jongsma
    • 1
  1. 1.Crop Protection Division DUPHAR B.VBiochemistry and Synthesis Departments’s-GravelandThe Netherlands

Personalised recommendations