Photophysics and Photochemistry of Hematoporphyrin, Hematoporphyrin Derivative and Uroporphyrin I

  • L. I. Grossweiner
  • A. Blum
  • G. C. Goyal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 193)

Abstract

The putative action mechanism in photodynamic therapy (PDT) involves serum transport of HPD to tumor tissue, localization and retention of the active constituent, generation of singlet molecular oxygen (Δ) by the action of visible light and the attack of t on the cellular targets. Early workers postulated that tumor tissue membranes are key targets in PDT (Dougherty et al., 1978), which is consistent with evidence that photosensitization of red blood cell membranes by protoporphyrin is mediated by Δ (Lamola et al., 1973). Subsequent studies on photosensitization of model membranes by hematoporphyrin (HP) and HPD are consistent with this hypothesis. However, the specific targets have not been identified and the involvement of non- membrane targets has not been ruled out. HPD is a porphyrin mixture leading to a complicated dependence of the photophysical and photochemical properties on the medium. The active constituent has not been adequately characterized, although there is evidence that it is a covalent dimer or oligomer of porphyrin units (Berenbaum et ai., 1982; Dougherty et al., 1984; Swincer et al., 1985). Dougherty et al. (1984) refer to this material as dihematoporphyrin ether (DHE), which will be used for convenience in this paper, although the structure implied by the terminology has not been proven. The present results were obtained with an enriched HPD material prepared by poiyacryiamide gel filtration of HPD referred to as HpD-A (Grossweiner and Goyal, 1983).

Keywords

Cholesterol Surfactant Tungsten Fractionation Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreoni, A., Cubeddu, R., De Silvestri, S. and Laporta, P., 1982, Hematoporphyrin derivative! Experimental evidence for aggregated species, Chem. Phys. Lett.. 88: 33.CrossRefGoogle Scholar
  2. Asakawa, T., and Matsushita, S., 1980, Coloring conditions of thiobarbitunc acid test for detecting lipid hydroperoxides, Lipidst 15: 137.CrossRefGoogle Scholar
  3. Bellnier, D. A., and Lin, C.-W., 1984, Photodynamic inactivation of cultured bladder tumor cells: A preliminary study of the effects of porphyrin aggregation, in: “Porphyrin Localization and Treatment of Tumors,” D. R. Doiron and C. J. Gomer, eds., Alan R. Liss, Inc., New York.Google Scholar
  4. Berenbaum, M. C., Bonnett, R., and Scourides, P. A., 1982, In vivo biological activity of the components of hematoporphyrin derivative, Br. J. Cancer. 45: 571.PubMedCrossRefGoogle Scholar
  5. Blum, A., and Grossweiner, L. I., 1985, Singlet oxygen generation by hematoporphyrin IX, uroporphyrin I and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes, Photochem. Photobiol.. 41: 27.PubMedCrossRefGoogle Scholar
  6. Brown, S. 3., Shillcock, M., and Jones, P., 1976, Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution, Biochem. J., 153: 279.Google Scholar
  7. Dearden, S. U., Hunter, T. P., and Philip, J., 1985, Fatty acid analysis as a function of photoxidation in egg yolk lecithin vesicles, Photochem. Photobiol,. 41: 213.CrossRefGoogle Scholar
  8. Doiron D. R., Gomer, C. J., Fountain, S. U., and Razum, N. J., 1984, Photophysics and dosimetry of photoradiation therapy, in “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Press, New York.Google Scholar
  9. Dougherty, T. J., 1983, Hematoporphyrin as a photosensitizer of tumors, Photochem. Photobiol., 38: 377.PubMedCrossRefGoogle Scholar
  10. Dougherty, T. J., Boyle, D. G., Weishaupt, K. R., Henderson, B. A., Potter, K. R., Bellnier, D. A. and Hityk, K. E., 1983, Photoradiation therapy - Clinical and drug advances, in: “Porphyrin Photosensitization”, D. Kessel and T. U. Dougherty, eds., Plenum Press, New York.Google Scholar
  11. Dougherty, T. J., Potter, W. R., and Weishaupt, K. R., 1984, The structure of the active component of hematoporphyrin derivative, in: “Porphyrins in Tumor Therapy”, A. Andreoni and R. Cubeddu, eds., Plenum Press, New York.Google Scholar
  12. Dougherty, T. J., Kaufman, J. E., Goidfarb, A., Weishaupt, K. R., Eoyie, D., and Mittleman, A., 1978, Photoradiation therapy for the treatment of malignant tumors, Cancer Res., 36: 2628.Google Scholar
  13. El-Far, M., and Pimstone N.,1984, A comparative study of 28 porphyrins and their abilities to localize in mammary mouse carcinoma: Uroporphyrin I superior to hematoporphynn derivative, ins “Porphyrin Localization and Treatment of Tumors,” D. R. Doiron and C. J. Gomer, eds., Alan R. Liss, Inc., New York.Google Scholar
  14. Emiliani, C., and Delmelle, M., 1983, The lipid solubility of porphyrins modulates their phototoxicity in membrane models, Photochem. Photobiol., 37: 487.CrossRefGoogle Scholar
  15. Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yield of singlet oxygen production by xanthene derivatives. Photochem. Photobiol., 37: 271.Google Scholar
  16. Gomer, C. J., and Razum, N. J., 1984, Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions, Photochem. Photobiol., 40: 435.PubMedCrossRefGoogle Scholar
  17. Goyal, G. C., Elum, A., and Grossweiner, L. I., 1983, Photosensitization of liposomal membranes by hematoporphyrin derivative, Cancer Res., 43: 5826.PubMedGoogle Scholar
  18. Grossweiner, L. I., 1984, Membrane photosensitization by hematoporphyrin and hematoporphyrin derivative, ins “Porphyrin Localization and Treatment of Tumors”, D. R. Doiron and C. J. Gomer, eds., Alan R. Liss, Inc., New York.Google Scholar
  19. Grossweiner, L. I., and Grossweiner, J. B., 1982, Hydrodynamic effects in the photosensitized iysis of liposomes, Photochem. Photobiol., 35: 583.CrossRefGoogle Scholar
  20. Grossweiner, L. I., Patel, A. S., and Grossweiner, J. E., 1982, Type I and type II mechanisms in the photosensitized lysis of phosphatidylcholine liposomes by hematoporphyrin, Photochem. Photobiol., 36: 159.PubMedCrossRefGoogle Scholar
  21. Grossweiner L. I., and Goyal, G. C., 1983, Photosensitized lysis of liposomes by hematoporphyrin derivative, Photochem. Photobiol., 37: 529.PubMedCrossRefGoogle Scholar
  22. Grossweiner, L. I., and Goyal, G. C., 1984, Einding of hematoporphyrin derivative to human serum albumin, Photochem. Photobiol., 40: 1.PubMedCrossRefGoogle Scholar
  23. Kessel, D., 1962, Components of hematoporphyrin derivatives and their tumor- localizing capacity, Cancer Res., 42: 1703.Google Scholar
  24. Kessel, D., and Cheng, M.-L., 1985, On the preparation and properties of dihematoporphyrm ether, the tumor-localizing component of HPD, Photochem. Photobiol., 41: 277.PubMedCrossRefGoogle Scholar
  25. Klein, R. A., 1970, The detection of oxidation in liposome preparations, Siochim. Eiophys. Acta, 210: 486.Google Scholar
  26. Kraljic, I., and £1 Kohsni, S., 1978, A new method for the detection of singlet oxygen in aqueous solution. Photochem. Photobiol., 28: 577.Google Scholar
  27. Lamola A. A., Yamane, T., and Trozzolo, A. K., 1973, Cholesterol hydroperoxide formation m red blood ceil membranes and photohemolysis associated with erythropoietic protoporphyria. Science, 179: 1131.PubMedCrossRefGoogle Scholar
  28. Lipson, R., Ealdes, E., and Olsen, A., 1961, The use of a derivative of hematoporphyrin in tumor detection, J. Natl. Cancer Inst., 26: 1.PubMedGoogle Scholar
  29. Moan, J., and Sommer, S., Fluorescence and absorption properties of the components of hematoporphyrin derivative, Photobiochem, Photobiophys., 3: 93.Google Scholar
  30. Moan, O., Christensen, T., and Jacobsen, P. E., 1984, Porphyrin-sensitized photomactivation of cells in vitro, in: “Porphyrin Localization and Treatment of Tumors,” D. R. Doiron and C. J. Gomer, eds., Alan R. Liss, Inc., New York.Google Scholar
  31. Moan,J., Rimmgton, C., and Western, A., 1985, The binding of dihematoporphyrm ether (Photofrin II) to human serum albumin, Clinica Chim. Acta, 145: 227.CrossRefGoogle Scholar
  32. Nozafci, Y., Lasic, D. D., Tanford, C., and Reynolds, J. A., 1982, Size Analysis of phospholipid vesicle preparations, Science, 217: 366.CrossRefGoogle Scholar
  33. Pathak, M. A., 1984, Mechanisms of psoralen photosensitization reactions, in: “Photobiologic, Toxicologic, and Pharmacologic Aspects of Psoralens,” M. A. Pathak and J. K. Dunnick, eds., U.S. Government Printing Office, Washington, D.C.Google Scholar
  34. Poletti, A., Murgia, S. A., Pasqua, A., Reddi, E., and Jori, G., 1984, “Photophysical and photosensitizing properties of Photofrin II, in: Porphyrins in Tumor Phototherapy,” A. Andreoni and R. Cubeddu, Plenum Press, New York.Google Scholar
  35. Reddi, E., Ricchelli, F., and Jori, G., 1981, Interaction of human serum albumin with hematoporphyrin and its Zn - and Fe -derivatives, Int. J. Peptide Protein Res.. 18: 402.CrossRefGoogle Scholar
  36. Reddi, E., Jori, G., Rodgers, M. A. J., and Spikes, J. D., 1983, Flash Photolysis of hemato- and copro-porphyrins in homogeneous and microheterogeneous aqueous dispersions, Photochem. Photobiol., 38: 639.CrossRefGoogle Scholar
  37. Reddi, E., Rodgers, K. A. J., Spikes, J. D., and Jori, G., 1984, The Effect of medium polarity on the hematoporphyrin-sensitizized photooxidation of L-tryptophan, Photochem. Photobiol., 40: 415.PubMedCrossRefGoogle Scholar
  38. Ricchelli, F. and Grossweiner, L. I., 1984, Properties of a new state of hematoporphyrin in dilute aqueous solution, Photochem. Photobiol., 40: 599.PubMedCrossRefGoogle Scholar
  39. Richard, P., Blum, A., and Grossweiner, L. I., Hematoporphyrin photosensitization of serum albumin and subtilism BPN’, Photochem. Photobiol., 37: 287.Google Scholar
  40. Salet, C., Moreno, G., Vever-Eizet, C., and Erault, D., Anoxic photodamage in the presence of porphyrins: Evidence for the lack of effects on mitochondrial membranes, Photochem. Photobiol., 40: 145.Google Scholar
  41. See, K. L., Forbes, I. J., and Betts, W. H., Oxygen dependency of photo- cytotoxicity with hematoporphyrin derivative, Photochem. Photobiol., 39: 631.Google Scholar
  42. Smith, G. J., 1985, The effects of aggregation on the fluorescence and and the triplet state yield of hematoporphyrin, Photochem. Photobiol., 41: 123.CrossRefGoogle Scholar
  43. Spikes, J. D., Burnham, B. F. and Bommer, J. C.,1984, Photosensitizing properties of free and bound uroporphyrin I, in “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Press, New York.Google Scholar
  44. Swincer, A. G., Xard, A. D., and Howiett, G. J., 1985, The molecular weight of hematoporphyrin derivative, its gel column fractionations and some of its components in aqueous solution, Photochem. Photobiol., 41: 47.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. I. Grossweiner
    • 1
  • A. Blum
    • 1
  • G. C. Goyal
    • 1
  1. 1.Physics DepartmentIllinois Institute of TechnologyChicagoUSA

Personalised recommendations